Abstract
We introduce Abstract DPLL, a general and simple abstract rule-based formulation of the Davis-Putnam-Logemann-Loveland (DPLL) procedure. Its properties, such as soundness, completeness or termination, immediately carry over to the modern DPLL implementations with features such as non-chronological backtracking or clause learning. This allows one to formally reason about practical DPLL algorithms in a simple way. In the second part of this paper we extend the framework to Abstract DPLL modulo theories. This allows us to express—and formally reason about—state-of-the-art concrete DPLL-based techniques for satisfiability modulo background theories, such as the different lazy approaches, or our DPLL(T) framework.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A., Sebastiani, R.: A SAT based approach for solving formulas over boolean and linear mathematical propositions. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 195–210. Springer, Heidelberg (2002)
Armando, A., Castellini, C., Giunchiglia, E.: SATbased procedures for temporal reasoning. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 97–108. Springer, Heidelberg (2000)
Barrett, C.W., Berezin, S.: CVC lite: A new implementation of the cooperating validity checker. Category B. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 515–518. Springer, Heidelberg (2004)
Barrett, C., Dill, D., Stump, A.: Checking satisfiability of first-order formulas by incremental translation into sat. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 236. Springer, Heidelberg (2002)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Comm. of the ACM 5(7), 394–397 (1962)
de Moura, L., Rueß, H.: Lemmas on demand for satisfiability solvers. In: Procs. 5th Int. Symp. on the Theory and Applications of Satisfiability Testing, SAT 2002, pp. 244–251 (2002)
Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)
Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explanation. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 355–367. Springer, Heidelberg (2003)
Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)
Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Design, Automation, and Test in Europe (DATE 2002), pp. 142–149 (2002)
Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Proc. 38th Design Automation Conference (DAC 2001) (2001)
Marques-Silva, J., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521
Tinelli, C.: A DPLL-based calculus for ground satisfiability modulo theories. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 308–319. Springer, Heidelberg (2002)
Zhang, H.: SATO: An efficient propositional prover. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 272–275. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nieuwenhuis, R., Oliveras, A., Tinelli, C. (2005). Abstract DPLL and Abstract DPLL Modulo Theories. In: Baader, F., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2005. Lecture Notes in Computer Science(), vol 3452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32275-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-32275-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25236-8
Online ISBN: 978-3-540-32275-7
eBook Packages: Computer ScienceComputer Science (R0)