Skip to main content

Ordered Resolution with Selection for \(\mathcal{H}(@)\)

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3452))

Abstract

The hybrid logic \(\mathcal{H}(@)\) is obtained by adding nominals and the satisfaction operator @ to the basic modal logic. The resulting logic gains expressive power without increasing the complexity of the satisfiability problem, which remains within PSpace. A resolution calculus for \(\mathcal{H}(@)\) was introduced in [5], but it did not provide strategies for ordered resolution and selection functions. Additionally, the problem of termination was left open.

In this paper we address both issues. We first define proper notions of admissible orderings and selection functions and prove the refutational completeness of the obtained ordered resolution calculus using a standard “candidate model” construction [10]. Next, we refine some of the nominal-handling rules and show that the resulting calculus is sound, complete and can only generate a finite number of clauses, establishing termination. Finally, the theoretical results were tested empirically by implementing the new strategies into HyLoRes [6,18], an experimental prototype for the original calculus described in [5]. Both versions of the prover were compared and we discuss some preliminary results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afshordel, B., Brahm, U., Cohrs, C., Engel, T., Keen, E., Theobald, C., Topić, D., Weidenbach, C.: System description: SPASS Version 1.0.0. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 187–201. Springer, Heidelberg (1999)

    Google Scholar 

  2. Areces, C.: Logic Engineering. The Case of Description and Hybrid Logics. PhD thesis, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, The Netherlands (October 2000) H(@)

    Google Scholar 

  3. Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics. In: Proc. of the 8th Annual Conference of the EACSL, pp. 307–321 (1999)

    Google Scholar 

  4. Areces, C., Blackburn, P., Marx, M.: Hybrid logics: Characterization, interpolation and complexity. Journal of Symbolic Logic 66(3), 977–1010 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Areces, C., de Nivelle, H., de Rijke, M.: Resolution in modal, description and hybrid logic. Journal of Logic and Computation 11(5), 717–736 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Areces, C., Heguiabehere, J.: HyLoRes: A hybrid logic prover based on direct resolution. In: Advances in Modal Logic, Toulouse, France (2002)

    Google Scholar 

  7. Areces, C., Heguiabehere, J.: hGen: A random CNF formula generator for Hybrid Languages. In: Proc. of Methods for Modalities, Nancy, France, vol. 3 (2003)

    Google Scholar 

  8. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  9. Bachmair, L., Ganzinger, H.: Equational reasoning in saturation-based theorem proving. In: Automated deduction—a basis for applications, vol. I, pp. 353–397. Kluwer, Dordrecht (1998)

    Google Scholar 

  10. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, ch. 2, pp. 19–99. Elsevier, Amsterdam (2001)

    Google Scholar 

  11. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic Journal of the IGPL 8(3), 339–365 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  13. Dershowitz, N., Jouannaud, J.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Volume B: Formal Models and Sematics, vol. (B), pp. 243–320. Elsevier and MIT Press (1990)

    Google Scholar 

  14. Georgieva, L., Hustadt, U., Schmidt, R.: Computational space efficiency and minimal model generation for guarded formulae. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 85–99. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Giunchiglia, E., Tacchella, A., Giunchiglia, F.: SAT-based decision procedures for classical modal logics. Journal of Automated Reasoning 28(2), 143–171 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, p. 701. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Harel, D.: Dynamic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic. 165 of Synthese Library, vol. II, pp. 497–604. D. Reidel Publishing Co., Dordrecht (1984)

    Chapter  Google Scholar 

  18. HyLoRes’ Home Page (2004), http://www.loria.fr/~areces/HyLoRes/

  19. Mitchell, D., Sleman, B., Levesque, H.: Hard and easy distributions of SAT problems. In: Proc. of the 10th National Conference on Artificial Intelligence, pp. 459–465 (1992)

    Google Scholar 

  20. Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Information and Computation 93(2), 263–332 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Patel-Schneider, P., Sebastiani, R.: A new general method to generate random modal formulae for testing decision procedures. Journal of Artificial Intelligence Research 18, 351–389 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Communications 15(2), 91–110 (2002) Special issue on CASC

    MATH  Google Scholar 

  23. Voronkov, A.: Algorithms, datastructures, and other issues in efficient automated deduction. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 13–28. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Areces, C., Gorín, D. (2005). Ordered Resolution with Selection for \(\mathcal{H}(@)\) . In: Baader, F., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2005. Lecture Notes in Computer Science(), vol 3452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32275-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32275-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25236-8

  • Online ISBN: 978-3-540-32275-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics