Skip to main content

Application of Kernel Method to Reveal Subtypes of TF Binding Motifs

Causal Analysis of Gene Expression Data

  • Conference paper
Regulatory Genomics (RRG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3318))

Included in the following conference series:

  • 274 Accesses

Abstract

Transcription factor binding sites often contain several subtypes of sequences that follow not just one but several different patterns. We developed a novel sensitive method based on kernel estimations that is able to reveal subtypes of TF binding sites. The developed method produces patterns in form of positional weight matrices for the individual subtypes and has been tested on simulated data and compared with several other methods of pattern discovery (Gibbs sampling, MEME, CONSENSUS, MULTIPROFILER and PROJECTION). The kernel method showed the best performance in terms of how close the revealed weight matrices are to the original ones. We applied the Kernel method to several TFs including nuclear receptors and ligand-activated transcription factors AhR. The revealed patterns were applied to analyze gene expression data. In promoters of differentially expressed genes we found specific combinations of different types of TF binding patterns that correlate with the level of up or down regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bailey, T.L., Elkan, C.: Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994)

    Google Scholar 

  2. Buhler, J., Tompa, M.: J. Comput. Biol. 9, 225–242 (2002)

    Article  Google Scholar 

  3. Ellrott, K., Yang, C., Sladek, F.M., Jiang, T.: Bioinformatics (Suppl. 2), S100–S109 (2002)

    Google Scholar 

  4. Hertz, G.Z., Stormo, G.D.: Bioinformatics 15, 563–577 (1999)

    Article  Google Scholar 

  5. Keich, U., Pevzner, P.A.: Subtle motifs: defining the limits of motif finding algorithms. Bioinformatics 18, 1382–1390 (2002)

    Article  Google Scholar 

  6. Lawrence, C.E., Altschul, S.F., Bogouski, M.S., Liu, J.S., Neuwald, A.F., Wooten, J.C.: Science 262, 208–214 (1993)

    Google Scholar 

  7. Pevzner, P.A., Sze, S.: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 269–278 (2000)

    Google Scholar 

  8. Thakurta, D.G., Stormo, G.D.: Bioinformatics 17, 608–621 (2001)

    Article  Google Scholar 

  9. Tikunov, Y., Kel, A.E.: Kernel method for estimation of functional site local consensi. Classification of transcription initiation sites in eukaryotic genes. In: Proceedings of the German Conference on Bioinformatics (GCB 2000), Heidelberg, October 5-7, pp. 83–88 (2000)

    Google Scholar 

  10. Tikunov, Y., Kel, A.: Functional of averaged density: Application for estimation of probability density function (2004) (Submitted)

    Google Scholar 

  11. Workman, C.T., Stormo, G.D.: Pac. Symp. Biocomput. 5, 464–475 (2000)

    Google Scholar 

  12. Parzen, E.: On estimation of probability density function and mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics 27, 832–837 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  14. Orlov, A.I.: Classification of nonnumeric objects on the basis of nonparametric density estimations. In: Problems of computer data analysis and modeling, pp. 141–148. Byelorussian State University (1991)

    Google Scholar 

  15. Wingender, E., Chen, X., Fricke, E., Geffers, R., Hehl, R., Liebich, I., Krull, M., Matys, V., Michael, H., Ohnhäuser, R., Prüß, M., Schacherer, F., Thiele, S., Urbach, S.: The TRANSFAC system on gene expression regulation. Nucleic Acids Res. 29, 281–283 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kel, A., Tikunov, Y., Voss, N., Borlak, J., Wingender, E. (2005). Application of Kernel Method to Reveal Subtypes of TF Binding Motifs. In: Eskin, E., Workman, C. (eds) Regulatory Genomics. RRG 2004. Lecture Notes in Computer Science(), vol 3318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32280-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32280-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24456-1

  • Online ISBN: 978-3-540-32280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics