Skip to main content

Genome Rearrangement in Mitochondria and Its Computational Biology

  • Conference paper
Comparative Genomics (RCG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3388))

Included in the following conference series:

Abstract

In the first part of this paper, we investigate gene orders of closely related mitochondrial genomes for studying the properties of mutations rearranging genes in mitochondria. Our conclusions are that the evolution of mitochondrial genomes is more complicated than it is considered in recent methods, and stochastic modelling is necessary for its deeper understanding and more accurate inferring. The second part is a review on the Markov chain Monte Carlo approaches for the stochastic modelling of genome rearrangement, which seem to be the only computationally tractable way to this problem. We introduce the concept of partial importance sampling, which yields a class of Markov chains being efficient both in terms of mixing and computational time. We also give a list of open algorithmic problems whose solution might help improve the efficiency of partial importance samplers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sturtevant, A.H., Novitski, E.: The homologies of chromosome elements in the genus Drosophila. Genetics 26, 517–541 (1941)

    Google Scholar 

  2. Palmer, J.D., Herbon, L.A.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 28, 87–97 (1988)

    Article  Google Scholar 

  3. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comp. Biol. 8(5), 483–491 (2001)

    Article  Google Scholar 

  4. Bergeron, A.: A very elementary presentation of the hannenhalli-pevzner theory. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 106–117. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Hannenhalli, S., Pevzner, P.A.: Transforming Cabbage into Turnip: Polynomial Algorithm for Sorting Signed Permutations by Reversals. Journal of ACM 46(1), 1–27 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kaplan, H., Shamir, R., Tarjan, R.: A faster and simpler algorithm for sorting signed permutations by reversals. SIAM J. Comput. 29(3), 880–892 (1999)

    Article  MathSciNet  Google Scholar 

  7. Siepel, A.: An algorithm to find all sorting reversals. In: Proceedings of RECOMB 2002, pp. 281–290 (2002)

    Google Scholar 

  8. Hannenhalli, S.: Polynomial algorithm for computing translocation distance between genomes. In: Proceedings of CPM 1996, pp. 168–185 (1996)

    Google Scholar 

  9. Bafna, V., Pevzner, A.: Sorting by transpositions. SIAM J. Disc. Math. 11(2), 224–240 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for sorting by reversals. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 200–210. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Eriksen, N.: (1+ε)-approximation of sorting by reversals and transpositions. In: Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 227–237. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Gu, Q.-P., Peng, S., Sudborough, H.I.: A 2-Approximation Algorithm for Genome Rearrangements by Reversals and Transpositions. Theor. Comp. Sci. 210(2), 327–339 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kececioglu, J.D., Sankoff, D.: Exact and Approximation Algorithms for Sorting by Reversals, with Application to Genome Rearrangement. Algorithmica 13(1/2), 180–210 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Blanchette, M., Kunisawa, T., Sankoff, D.: Parametric genome rearrangement. Gene 172, GC11–GC17 (1996)

    Google Scholar 

  15. Felsenstein, J.: Inferring phylogenies. Sinauer Associates (2003)

    Google Scholar 

  16. Hein, J., Wiuf, C., Knudsen, B., Moller, M.B., Wibling, G.: Statistical alignment: Computational properties, homology testing and goodness-of-fit. J. Mol. Biol. 203, 265–279 (2000)

    Article  Google Scholar 

  17. Larget, B., Simon, D.L., Kadane, B.J.: Bayesian phylogenetic inference from animal mitochondrial genome arrangements. J. Roy. Stat. Soc. B. 64(4), 681–695

    Google Scholar 

  18. York, T.L., Durrett, R., Nielsen, R.: Bayesian estimation of inversions in the history of two chromosomes. J. Comp. Biol. 9, 808–818 (2002)

    Article  Google Scholar 

  19. Durrett, R., Nielsen, R., York, T.L.: Bayesian estimation of genomic distance. Genetics 166, 621–629 (2004)

    Article  Google Scholar 

  20. Miklós, I.: MCMC Genome Rearrangement. Bioinformatics 19, ii130–ii137 (2003)

    Google Scholar 

  21. Miklós, I., Ittzés, P., Hein, J.: ParIS genome rearrangement server. Bioinformatics (2004) (advance published) doi:10.1093/bioinformatics/bti060

    Google Scholar 

  22. Boore, J.L.: The duplication/random loss model for genome rearrangement exemplified by mitochondrial genomes of deuterostome animals. In: Sankoff, D., Nadau, J.H. (eds.) Comparative Genomics. Computational Biology Series, vol. 1. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  23. Miklós, I., Lunter, G.A., Holmes, I.: A ’long indel’ model for evolutionary sequence alignment. Mol. Biol. Evol. 21(3), 529–540 (2004)

    Article  Google Scholar 

  24. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1091 (1953)

    Article  Google Scholar 

  25. Liu, J.S.: Monte Carlo strategies in scientific computing. Springer Series in Statistics, New-York (2001)

    Google Scholar 

  26. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MATH  Google Scholar 

  27. von Neumann, J.: Various techniques used in connection with random digits. National Bureau of Standards Applied Mathematics Series 12, 36–38 (1951)

    Google Scholar 

  28. Nadau, J.H., Taylor, B.A.: Lengths of chromosome segments conserved since divergence of man and mouse. PNAS 81, 814–818 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miklós, I., Hein, J. (2005). Genome Rearrangement in Mitochondria and Its Computational Biology. In: Lagergren, J. (eds) Comparative Genomics. RCG 2004. Lecture Notes in Computer Science(), vol 3388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32290-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32290-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24455-4

  • Online ISBN: 978-3-540-32290-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics