Skip to main content

A Non-rigid Approach to Scan Alignment and Change Detection Using Range Sensor Data

  • Conference paper
Field and Service Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 25))

Summary

We present a probabilistic technique for alignment and subsequent change detection using range sensor data. The alignment method is derived from a novel, non-rigid approach to register point clouds induced by pose-related range observations that are particularly erroneous. It allows for high scan estimation errors to be compensated distinctly, whilst considering temporally successive measurements to be correlated. Based on the alignment, changes between data sets are detected using a probabilistic approach that is capable of differentiating between likely and unlikely changes. When applied to observations containing even small differences, it reliably identifies intentionally introduced modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Singh, A. 1989. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6):989–1004.

    Google Scholar 

  2. Dai, X., Khorram, S. 1998. The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Transactions on Geoscience and Remote Sensing, 36(5):1566–1577.

    Article  Google Scholar 

  3. Chavez, P. S., MacKinnon, D. J. 1994. Automatic detection of vegetation changes in the southwestern United States using remotely sensed images. Photogramm Eng. Remote Sensing, 60(5):571–582.

    Google Scholar 

  4. Carlotto, M. J. 1997. Detection and analysis of change in remotely sensed imagery with application to wide area surveillance. IEEE Transactions on Image Processing, 6(1):189–202.

    Article  Google Scholar 

  5. Murakami, H., Nakagawa, K., Hasegawa, H., Shibata, T., Iwanami, E. 1999. Change detection of buildings using an airborne laser scanner. Journal of Photogrammetry and Remote Sensing, 54(2–3):148–152.

    Article  Google Scholar 

  6. Vu, T. T., Matsuoka, M., Yamazaki, F. 2004. Lidar-based change detection of buildings in dense urban areas. IEEE 200 International Geoscience and Remote Sensing Symposium, CD-ROM, 4p, 2004.9.

    Google Scholar 

  7. Coppin, P. R., Bauer, M. E. 1996. Digital change detection in forest ecosystems with remote sensing imagery. Remote Sensing Reviews, 13(3–4):207–234.

    Google Scholar 

  8. Hsiao, K. H., Liu, J. K., Yu, M. F., Tseng, Y. H. 1999. Change detection of landslide terrains using ground-based lidar data. Proceedings of the XXth ISPRS Congress, Istanbul, Turkey.

    Google Scholar 

  9. Habib, A. F., Lee, Y.-R., Morgan, M. 2001. Surface matching and change detection using a modified Hough transformation for robust parameter estimation. Photogrammetric Record, 17(98):303–315.

    Article  Google Scholar 

  10. Besl, P. and McKay, N. 1992. A method for registration of 3d shapes. Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256.

    Article  Google Scholar 

  11. Chen, Y. and Medioni, G. 1992. Object modeling by registration of multiple range images. Image and Vision Computing, 10:145–155.

    Article  Google Scholar 

  12. Chui, H., Rangarajan, A. 2000. A new point matching algorithm for non-rigid registration. Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR).

    Google Scholar 

  13. Haehnel, D., Thrun, S., Burgard, W. 2003. An extension of the ICP algorithm for modeling nonrigid objects with mobile robots. Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico.

    Google Scholar 

  14. Whalley, M., Freed, M., Harris, R., Takahashi, M., Schulein, G., and Howlett, J. 2005. Design, integration, and flight test results for an autonomous surveillance helicopter. AHS International Specialists Meeting on Unmanned Rotorcraft, Mesa, AZ.

    Google Scholar 

  15. Press, W. H. 1988. Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaestner, R., Thrun, S., Montemerlo, M., Whalley, M. (2006). A Non-rigid Approach to Scan Alignment and Change Detection Using Range Sensor Data. In: Corke, P., Sukkariah, S. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 25. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-33453-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-33453-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33452-1

  • Online ISBN: 978-3-540-33453-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics