Skip to main content

A NeuroCognitive Approach to Decision-Making in Chance Discovery

  • Chapter
Chance Discoveries in Real World Decision Making

Part of the book series: Studies in Computational Intelligence ((SCI,volume 30))

  • 493 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ohsawa, Y.: Chance discoveries for making decisions in complex real world. New Generation Computing 20(2) (2002) 143-163

    Article  MATH  Google Scholar 

  2. Prendinger H. and Ishizuka M.: Methodological considerations on chance dis-covery. In Terano, T. et al., editor, New Frontiers in Artificial Intelligence: Joint JSAI 2001 Workshop Post-Proceedings, volume 2253 of LNCS, pages 425-434. Springer-Verlag, 2001.

    Google Scholar 

  3. Horiguchi T. and Hirashima T.: The role of counterexamples in discovery learning environment: Awareness of the chance for learning. In Terano, T. et al., editor, New Frontiers in Artificial Intelligence: Joint JSAI 2001 Workshop Post-Proceedings, volume 2253 of LNCS, pages 468-474. Springer-Verlag, 2001.

    Google Scholar 

  4. Festinger, L.: A theory of cognitive dissonance. Stanford University Press, Stanford, CA (1957)

    Google Scholar 

  5. Oehlmann, R.: Metacognitive and computational aspects of chance discovery. New Generation Computing 21(1) (2003) 3-12

    Article  MATH  Google Scholar 

  6. Sternberg, R.: A three-facet model of creativity. In Sternberg, R., ed.: The Nature of Creativity. Cambridge University Press (1988) 125-147

    Google Scholar 

  7. Oehlmann, R.: Awareness and implicit memory in chance discovery. In Abe, A., Ohsawa, Y., eds.: Readings in Chance Discovery. Advanced Knowledge International, Adelaide (2005) 3-13

    Google Scholar 

  8. Kandel, E.R., Kupfermann, I. and Iversen S.: Learning and memory. In Kandel, E. et al., editor, Principles of Neural Science, pages 1227-1246. McGraw-Hill, fourth edition, 2000.

    Google Scholar 

  9. Eichenbaum, H.: The Cognitive Neuroscience of Memory - An Introduction. Oxford University Press, New York (2002)

    Book  Google Scholar 

  10. Matsumura, N., Ohsawa, Y., Ishizuka, M.: PAI: Automatic indexing for extract-ing asserted keywords from a document. New Generation Computing 21(1) (2003)37-47

    Article  MATH  Google Scholar 

  11. Matsuo, Y.: Finding meaning of clusters and flows. In Abe, A., Ohsawa, Y., eds.: Readings in Chance Discovery. Advanced Knowledge International, Ade-laide (2005) 269-275

    Google Scholar 

  12. Tung, W., Quek, C., Cheng, P.: A neuro-fuzzy perspective to chance discovery and its application to the study of banking failures. In Abe, A., Ohsawa, Y., eds.: Readings in Chance Discovery. Advanced Knowledge International, Ade-laide (2005) 361-372

    Google Scholar 

  13. Holland, J., Holyoak, K., Nisbett, R., Thagard, P.: Induction: Processes of Inference, Learning, and Discovery. MIT Press, Cambridge (1986)

    Google Scholar 

  14. Tomporowski, P.: The Psychology of Skill: A Life-Span Approach. Praeger (2003)

    Google Scholar 

  15. Sweatt, J.: Mechanisms of Memory. Elsevier (2003)

    Google Scholar 

  16. Tung, W., Quek, C.: GenSoFNN: A generic self-organizing fuzzy neural net-work. IEEE Trans. Neural Networks 13(5) (2002) 1075-1086

    Article  Google Scholar 

  17. Turksen, I., Zhong, Z.: An approximate analogical reasoning scheme based on similarity measures and interval valued fuzzy sets. Fuzzy Sets and Syst. 34 (1990) 323-346

    Article  Google Scholar 

  18. Kandel, E., Schwartz, J., Jessell, T.: Principles of Neural Science. 4th edn. McGraw-Hill (2000)

    Google Scholar 

  19. Gluck, M., Myers, C.: Gateway to Memory: An Introduction to Neural Network Modeling of the Hippocampus in Learning and Memory. MIT Press (2001)

    Google Scholar 

  20. Amaral, D.G. and Petersen, S. editors.: Functional imaging of the human hip-pocampus. A special issue of Hippocampus, volume 9, 1999.

    Google Scholar 

  21. Tulving, E.: Episodic and semantic memory. In Tulving, E., Donaldson, W., eds.: Organization of Memory. Academic Press, New York (1972) 381-423

    Google Scholar 

  22. Henke, K., Buck, A., Weber, B., Wieser, H.: Human hippocampus establishes associations in memory. Hippocampus 7 (1997) 249-256

    Article  Google Scholar 

  23. McClelland, J., McNaughton, B., O’Reilly, R.: Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review 102(3) (1995) 419-457

    Article  Google Scholar 

  24. Gluck, M., Myers, C.: Hippocampal mediation of stimulus representation: a computational theory. Hippocampus 3 (1993) 491-516

    Article  Google Scholar 

  25. Eichenbaum, H., Bunsey, M.: On the binding of associations in memory: clues from studies on the role of the hippocampal region in paired associate learning. Curr. Dir. Psychol. Sci. 4 (1995) 19-23

    Article  Google Scholar 

  26. Lorincz, A., Buzsaki, G.: Two-phase computational model training long-term memories in the entorhinal-hippocampal region. In Scharfman, H., Witter, M., eds.: The Parahippocampal Region: Implications for Neurological and Psychi-atric Diseases. New York Academy of Sciences (2000) 83-111

    Google Scholar 

  27. Norman, K., O’Reilly, R.: Modeling hippocampal and neocortical contributions to recognition memory: a complementary learning systems approach. Psychol. Rev. 110(4) (2003) 611-646

    Article  Google Scholar 

  28. Tung, W., Quek, C., Cheng, P.: GenSo-EWS: A novel neural-fuzzy based early warning system for predicting bank failures. Neural Networks 17(4) (2004) 567-587

    Article  Google Scholar 

  29. Tung, W.: A Generalized Framework for Fuzzy Neural Architecture. PhD thesis, School of Computer Engineering, Nanyang Technological University, Singapore (2004)

    Google Scholar 

  30. Tung, W., Quek, C.: DIC: a novel discrete incremental clustering technique for the derivation of fuzzy membership functions. In Ishizuka, M., Abdul, S., eds.: PRICAI 2002: Trends in artificial intelligence. Volume LNAI 2417. Springer (2002)178-187

    Google Scholar 

  31. French, R.: The computational modeling of analogy-making. Trends in Cognitive Sciences 6(5) (2002) 200-205

    Article  Google Scholar 

  32. Mill, J.: System of logic. In: Collected Works of John Stuart Mill. Volume VIII. University of Toronto Press, Toronto, Canada (1973)

    Google Scholar 

  33. Gentner, D.: Structure mapping: A theoretical framework for analogy. Cognitive Science 7(2) (1983) 155-170

    Article  Google Scholar 

  34. Carbonell, J.: Learning by analogy: Formulating and generating plans from past experience. In Michalski, R., Carbonell, J., Mitchell, T., eds.: Machine Learning: An Artificial Intelligence Approach. Springer (1984) 137-161

    Google Scholar 

  35. Spanoudakis, G., Constantopoulos, P.: Elaborating analogies from conceptual models. Int. Journal of Intelligent Syst. (917)

    Google Scholar 

  36. Newell, A., Simon, H.: Human Problem Solving. Prentice-Hall, Englewood Cliffs, NJ (1972)

    Google Scholar 

  37. Weitzenfeld, J.: Valid reasoning by analogy. Philosophy of Science 51 (1984) 137-149

    Article  MathSciNet  Google Scholar 

  38. Rosch, E.: Natural categories. Cognitive Psychology 4 (1973) 328-350

    Article  Google Scholar 

  39. Schank, R.: Dynamic Memory: A Theory of Learning in People and Computers. Cambridge University Press, Cambridge, England (1982)

    Google Scholar 

  40. Keane, M.: Analogical Problem Solving. Ellis Horwood, Chichester, England (1988)

    Google Scholar 

  41. Novick, L., Holyoak, K.: Mathematical problem solving by analogy. Journal of Experimental Psychology: Learning, Memory and Cognition 14 (1991) 398-415

    Article  Google Scholar 

  42. Hall, R.: Computational approaches to analogical reasoning: A comparative analysis. Artificial Intelligence 39(1) (1989) 39-120

    Article  MATH  MathSciNet  Google Scholar 

  43. Veloso, M., Carbonell, J.: Derivational analogy in prodigy: automating case acquisition, storage and utilization. Machine Learning 10 (1993) 249-278

    Article  Google Scholar 

  44. Salvucci, D., Anderson, J.: Integrating analogical mapping and general problem-solving: the path-mapping theory. Cognitive Science 25 (2001) 67-110

    Article  Google Scholar 

  45. Melis, E., Veloso, M.: Analogy in problem solving. In Cerro, L.D., Gabbay, D., Ohlbach, H., eds.: Handbook of Practical Reasoning: Computational and Theoretical Aspects. Oxford University Press (1998)

    Google Scholar 

  46. Zadeh, L.: Fuzzy sets. Inf. Cont. 8 (1965) 338-353

    Article  MATH  MathSciNet  Google Scholar 

  47. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River, N.J. (1995)

    MATH  Google Scholar 

  48. Lin, C., Lee, C.: Neural Fuzzy Systems - A Neuro-Fuzzy Synergism to Intelli-gent Systems. Prentice Hall, Englewood Cliffs, NJ (1996)

    Google Scholar 

  49. Zadeh, L.: Calculus of fuzzy restrictions. In: Fuzzy sets and Their Applications to Cognitive and Decision Processes. Academic, New York (1975) 1-39

    Google Scholar 

  50. Mantaras, R.: Approximate reasoning models. Ellis Horwood, Chichester, England (1990)

    Google Scholar 

  51. Rubin, R., Altman, W., Mendelson, D.: Health care expenditures for people with diabetes mellitus. Journal of Clinical Endocrinology and Metabolism 78 (1992) 809A-809F

    Google Scholar 

  52. Beeson, P.B. and McDermott W.: Textbook of Medicine. W.B. Saunders Company. Philadelphia and London, 12th edition, 1967.

    Google Scholar 

  53. Ashcroft, F., Ashcroft, S.: Insulin: Molecular Biology to Pathology. Oxford University Press, New York (1992)

    Google Scholar 

  54. Cohen, A.: New disposable electronic micropump for parenteral drug delivery. In Gurny, R., Junginger, H., Peppas, N., eds.: Pulsatile Drug Delivery: Current Applications and Future Trends. Stuttgart (1993)

    Google Scholar 

  55. Cobelli, C., Ruggeri, A.: Evaluation of portal/peripheral route and of algorithms for insulin delivery in the closed-loop control of glucose in diabetes - a modeling study. IEEE Trans. Biomedical Engineering 30(2) (1983) 93-103

    Article  Google Scholar 

  56. Parker, R., Doyle III, F., Peppas, N.: The intravenous route to blood glucose control. IEEE Engineering in Medicine and Biology 20 (2001) 65-73

    Article  Google Scholar 

  57. Tyagi, P.: Insulin delivery systems: Present trends and the future direction. Indian Journal of Pharmacology 34 (2002) 379-389

    Google Scholar 

  58. American Diabetes Association: Online: http://www.diabetes.org/ (2001)

  59. Fletcher, L., Hraban, G. and Huang, P. et al.: Feasibility of an implanted, closed-loop, blood-glucose control device. Immunology 230, Stanford University, 2001.

    Google Scholar 

  60. Ollerton, R.: Application of optimal control theory to diabetes mellitus. Int. J. Control 50 (1989) 2503-2522

    Article  MATH  MathSciNet  Google Scholar 

  61. Fisher, M.: A semiclosed-loop algorithm for the control of blood glucose levels in diabetics. IEEE Trans. Biomed. Eng. 38(1) (1991) 57-61

    Article  Google Scholar 

  62. Hovorka, R.: Management of diabetes using adaptive control. Int. J. Adapt. Control Signal Process 19 (2005) 309-325

    Article  MATH  MathSciNet  Google Scholar 

  63. Andreassen, S., Benn, J.J. and Hovorka, R. et al.: A probabilistic approach to glucose adjustment: description of metabolic study prediction and insulin dose model and pilot evaluation. Computer Methods and Programs in Biomedicine, 41:153-165, 1994.

    Article  Google Scholar 

  64. Tresp, V., Briegel, T.: A solution for missing data in recurrent neural networks with an application to blood glucose prediction. In Jordan, M., Kearns, M., Solla, S., eds.: Advances in Neural Information Processing Systems 10. MIT-Press (1998)

    Google Scholar 

  65. Bellomo, G., Brunetti, P. and Calabrese, G. et al.: Optimal feedback glycaemia regulation in diabetics. Med. and Biol. Eng. and Comput., 20:329-335, 1982.

    Google Scholar 

  66. Clemens, A.: Feedback control dynamics for glucose controlled insulin infusion system. Med. Prog. Technol. 6 (1979) 91-98

    Google Scholar 

  67. Trajanoski, Z., Wach, P.: Neural predictive controller for insulin delivery using the subcutaneous route. IEEE Trans. Biomedical Engineering 45(9) (1998) 1122-1134

    Article  Google Scholar 

  68. Parker, R.S., Doyle III, F.J. and Peppas N.A.: A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans. Biomedical Engineering, 46(2):148-157, 1999.

    Article  Google Scholar 

  69. Hovorka, R., Canonico, V. and Chassin, L. et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological Measurement, 25:905-920, 2004.

    Article  Google Scholar 

  70. Bequette, B.: A critical assessment of algorithms and challenges in the development of a closed-loop artificial pancreas. Diabetes Technology and Therapeutics 7(1)(2005) 28-47

    Article  Google Scholar 

  71. Topp, B., Promislow, K. and Devries, G. et al. A model of &bgr; -cell mass, insulin, and glucose kinetics: Pathways to diabetes. J Theoretical Biol., 206(4):605-620, 2000.

    Article  Google Scholar 

  72. Puckett, W., Lightfoot, E.: A model for multiple subcutaneous insulin injections developed from individual diabetic patient data. Am. J. Physiol. 269 (1995) E1115-24

    Google Scholar 

  73. Bremer, T., Gough, D.: Is blood glucose predictable from previous values? a solicitation for data. Diabetes 48(3) (1999) 445-451

    Article  Google Scholar 

  74. Tresp, V., Moody, J. and Delong, W.R.: Neural modeling of physiological processes. In Hanson, S. et al., editor, Computational Learning Theory and Natural Learning Systems, volume 2. MIT Press, 1994.

    Google Scholar 

  75. GlucoSim: A web-based educational simulation package for glucose-insulin levels in the human body. Online: http://216.47.139.198/glucosim/gsimul.html.

  76. Health Promotion Board of Singapore. Online: http://www.hpb.gov.sg/.

  77. Tung, W., Teddy, S., Zhao, G.: Neuro-cognitive approaches to the control and regulation of insulin for the treatment of diabetes mellitus. phase 1: Neurologically inspired modeling of the human glucose metabolic process. Technical Report C2i-TR-05/002, Center for Computational Intelligence, School of Computer Engineering, Nanyang Technological University, Singapore. (2005)

    Google Scholar 

  78. Quek, C., Zhou, R.: POPFNN: A pseudo outer-product based fuzzy neural network. Neural Networks 9(9) (1996) 1569-1581

    Article  MATH  Google Scholar 

  79. Ang, K., Quek, C., Pasquier, M.: POPFNN-CRI(S): Pseudo outer product based fuzzy neural network using the compositional rule of inference and singleton fuzzifier. IEEE Trans. Syst., Man and Cybernetics 33(6) (2003) 838-849

    Article  Google Scholar 

  80. Ang, K., Quek, C.: RSPOP: Rough set-based pseudo outer-product fuzzy rule identification algorithm. Neural Computation 17 (2005) 205-243

    Article  MATH  Google Scholar 

  81. Pasquier, M., Quek, C., Toh, M.: Fuzzylot: A self-organising fuzzy-neural rulebased pilot system for automated vehicles’. Neural Networks 14(8) (2001) 1099-1112

    Article  Google Scholar 

  82. Quek, C., Zhou, R.: Antiforgery: A novel pseudo-outer product based fuzzy neural network driven signature verification system. Pattern Recognition Letters 23(14) (2002) 1795-1816

    Article  MATH  Google Scholar 

  83. Ang, K., Quek, C., Wahab, A.: MCMAC-CVT: a novel on-line associative memory based cvt transmission control system. Neural Networks 15(2) (2001) 219-236

    Article  Google Scholar 

  84. Quek, C., Tan, B., Sagar, V.: POPFNN-based fingerprint verification system. Neural Networks 14 (2001) 305-323

    Article  Google Scholar 

  85. Tung, W.L. and Quek, C.: GenSo-FDSS: a neural-fuzzy decision support system for pediatric ALL cancer subtype identification using gene expression data. Artificial Intelligence in Medicine, 33(1):61-88, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tung, W.L., Quek, C. (2006). A NeuroCognitive Approach to Decision-Making in Chance Discovery. In: Ohsawa, Y., Tsumoto, S. (eds) Chance Discoveries in Real World Decision Making. Studies in Computational Intelligence, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34353-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34353-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34352-3

  • Online ISBN: 978-3-540-34353-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics