Skip to main content

Military Antenna Design Using a Simple Genetic Algorithm and hBOA

  • Chapter
Scalable Optimization via Probabilistic Modeling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 33))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, C. W. (2005). Theory, Design, and Application of Efficient Genetic and Evolutionary Algorithms. Doctoral dissertation, Gwangju Institude of Science and Technology

    Google Scholar 

  2. Caruana, R., and Schaffer, J. (1988). Representation and hidden bias: Gray vs. binary coding for genetic algorithms. Proceedings of the Fifth International Conference on Machine Learning, pp. 153-161

    Google Scholar 

  3. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  4. Goldberg, D. E. (2002). The design of innovation: Lessons from and for competent genetic algorithms. Kluwer Academic, Boston, MA

    MATH  Google Scholar 

  5. Kraus, J. D. (1988). Antennas, 2nd ed. McGraw-Hill, NY, USA

    Google Scholar 

  6. Larrañaga, P., and Lozano, J. A., (Eds.) (2002). Estimation of distribu-tion algorithms. Kluwer Academic, Boston, MA

    Google Scholar 

  7. Mailloux, R. J. (2001). A low-sidelobe partially overlapped constrained feed network for time-delayed subarrays. IEEE Transactions on Antennas and Propagation, 49(2):280-291

    Article  Google Scholar 

  8. Pelikan, M. (2002). Bayesian optimization algorithm: From single level to hierarchy. Ph.d. thesis, University of Illinois at Urbana-Champaign, Urbana, IL (also IlliGAL Report No. 2002023)

    Google Scholar 

  9. Pelikan, M., and Goldberg, D. E. (2000). Hierarchical problem solving by the Bayesian optimization algorithm. Genetic and evolutionary com-putation conference (GECCO-2000), pp. 267-274

    Google Scholar 

  10. Pelikan, M., and Goldberg, D. E. (2001). Escaping hierarchical traps with competent genetic algorithms. Genetic and evolutionary computa-tion conference (GECCO-2001), pp. 511-518

    Google Scholar 

  11. Pelikan, M., and Goldberg, D. E. (2003). Hierarchical BOA solves Ising spin glasses and MAXSAT. Genetic and Evolutionary Computation Conference (GECCO-2003), pp. 1271-1282 (also IlliGAL Report No. 2003001)

    Google Scholar 

  12. Pelikan, M., Goldberg, D. E., and Sastry, K. (2001). Bayesian optimization algorithm, decision graphs, and Bayesian networks. Genetic and evolutionary computation conference (GECCO-2001), pp. 519-526

    Google Scholar 

  13. Rahmat-Samii, Y., and Michielssen, E., (Eds.) (1999). Electromagnetic optimization by genetic algorithms. Wiley, NY, USA

    MATH  Google Scholar 

  14. Rowe, J., Whiteley, D., Barbluescu, L., and Watson, J. P. (2004). Properties of gray and binary representations. Evolutionary Computation, 12 (1):47-76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, TL., Santarelli, S., Goldberg, D.E. (2006). Military Antenna Design Using a Simple Genetic Algorithm and hBOA. In: Pelikan, M., Sastry, K., CantúPaz, E. (eds) Scalable Optimization via Probabilistic Modeling. Studies in Computational Intelligence, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34954-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34954-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34953-2

  • Online ISBN: 978-3-540-34954-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics