Skip to main content

Multi-Dimensional Continuous Metric for Mesh Adaptation

  • Conference paper
Proceedings of the 15th International Meshing Roundtable

Abstract

Mesh adaptation is considered here as the research of an optimum that minimizes the P 1 interpolation error of a function υ of ℝn given a number of vertices. A continuous modeling is described by considering classes of equivalence between meshes which are analytically represented by a metric tensor field. Continuous metrics are exhibited for Lp error model and mesh order of convergence are analyzed. Numerical examples are provided in two and three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Almeida, R., Feijóo, R., Galeao, A., Padra, C., and Silva, R. Adaptive finite element computational fluid dynamics using an anisotropic error estimator. Comput. Methods Appl. Mesh. Engrg. 182 (2000), 379–400.

    Article  MATH  Google Scholar 

  2. 2. Biswas, R., and Strawn, R. A new procedure for dynamic adaption of threedimensional unstructured grids. Applied Numerical Mathematics 13 (1994), 437–452.

    Article  MATH  Google Scholar 

  3. 3. Buscaglia, G., and Dari, E. Anisotropic mesh optimization and its application in adaptivity. Int. J. Numer. Meth. Engng 40 (1997), 4119–4136.

    Article  MATH  Google Scholar 

  4. 4. Castro-Diaz, M., Hecht, F., Mohammadi, B., and Pironneau, O. Anisotropic unstructured mesh adaptation for flow simulations. Int. J. Numer. Meth. Fluids 25 (1997), 475–491.

    Article  MATH  MathSciNet  Google Scholar 

  5. 5. Chen, L., Sun, P., and Xu, J. Optimal anisotropic simplicial meshes for minimizing interpolation errors in L p-norms. Math. Comp. 0 (2006). to appear.

    Google Scholar 

  6. 6. Courty, F., Leservoisier, D., George, P.-L., and Dervieux, A. Continuous metrics and mesh adaptation. Applied Numerical Mathematics 56 (2006), 117–145.

    Article  MATH  MathSciNet  Google Scholar 

  7. 7. Dervieux, A., Leservoisier, D., George, P.-L., and Coudiere, Y. About theoretical and practical impact of mesh adaptations on approximation of functions and of solution of pde. Int. J. Numer. Meth. Fluids 43 (2003), 507–516.

    MATH  MathSciNet  Google Scholar 

  8. 8. Dobrzynski, C. Adaptation de maillage anisotrope 3D et application à l'aérothermique des bâtiments. PhD thesis, Université Pierre et Marie Curie, Paris VI, Paris, France, 2005. (in French).

    Google Scholar 

  9. 9. Dompierre, J., Vallet, M., Fortin, M., Bourgault, Y., and Habashi, W. Anisotropic mesh adaptation: towards a solver and user independent cfd. AIAA paper 97–0861 (1997).

    Google Scholar 

  10. 10. Formaggia, L., Micheletti, S., and Perotto, S. Anisotropic mesh adaptation in computational fluid dynamics: Application to the advection-diffusionreaction and the Stokes problem. Applied Numerical Mathematics 51 (2004), 511–533.

    Article  MATH  MathSciNet  Google Scholar 

  11. 11. Frey, P. About surface remeshing. In Proc. of 9th Int. Meshing Rountable (New Orleans, LO, USA, 2000), pp. 123–136.

    Google Scholar 

  12. 12. Frey, P., and Alauzet, F. Anisotropic mesh adaptation for transient flows simulations. In Proc. of 12th Int. Meshing Rountable (Santa Fe, New Mexico, USA, 2003), pp. 335–348.

    Google Scholar 

  13. 13. Frey, P., and Alauzet, F. Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Engrg. 194, 48–49 (2005), 5068–5082.

    Article  MATH  MathSciNet  Google Scholar 

  14. 14. Frey, P., and George, P.-L. Mesh generation. Application to finite elements. Hermès Science, Paris, Oxford, 2000.

    MATH  Google Scholar 

  15. 15. George, P.-L., and Borouchaki, H. Back to edge flips in 3 dimensions. In Proc. of 12th Int. Meshing Rountable (Santa Fe, NM, USA, 2003), pp. 393–402.

    Google Scholar 

  16. 16. Gruau, C., and Coupez, T. 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput. Methods Appl. Mech. Engrg. 194, 48–49 (2005), 4951–4976.

    Article  MATH  MathSciNet  Google Scholar 

  17. 17. Huang, W. Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204 (2005), 633–665.

    Article  MATH  MathSciNet  Google Scholar 

  18. 18. Kallinderis, Y., and Vijayan, P. Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes. AIAA Journal 31, 8 (1993), 1440–1447.

    Google Scholar 

  19. 19. Leservoisier, D., George, P.-L., and Dervieux, A. Métrique continue et optimisation de maillage. RR-4172, INRIA, Apr. 2001. (in French).

    Google Scholar 

  20. 20. Li, X., Shephard, M., and Beall, M. 3D anisotropic mesh adaptation by mesh modification. Comput. Methods Appl. Mech. Engrg. 194, 48–49 (2005), 4915–4950.

    Article  MATH  MathSciNet  Google Scholar 

  21. 21. Löhner, R., and Baum, J. Adaptive h-refinement on 3D unstructured grids for transient problems. Int. J. Numer. Meth. Fluids 14 (1992), 1407–1419.

    Article  MATH  Google Scholar 

  22. 22. Mavriplis, D. Adaptive meshing techniques for viscous flow calculations on mixed-element unstructured meshes. AIAA paper 97–0857 (1997).

    Google Scholar 

  23. 23. Pain, C., Humpleby, A., de Oliveira, C., and Goddard, A. Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations. Comput. Methods Appl. Mech. Engrg. 190 (2001), 3771–3796.

    Article  MATH  Google Scholar 

  24. 24. Peraire, J., Peiro, J., and Morgan, K. Adaptive remeshing for threedimensional compressible flow computations. J. Comput. Phys. 103 (1992), 269–285.

    Article  MATH  Google Scholar 

  25. 25. Rausch, R., Batina, J., and Yang, H. Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations. AIAA Journal 30 (1992), 1243–1251.

    Article  Google Scholar 

  26. 26. Schall, E., Leservoisier, D., Dervieux, A., and Koobus, B. Mesh adaptation as a tool for certified computational aerodynamics. Int. J. Numer. Meth. Fluids 45 (2004), 179–196.

    Article  MATH  Google Scholar 

  27. 27. Speares, W., and Berzins, M. A 3d unstructured mesh adaptation algorithm for time-dependent shock-dominated problems. Int. J. Numer. Meth. Fluids 25 (1997), 81–104.

    Article  MATH  Google Scholar 

  28. 28. Tam, A., Ait-Ali-Yahia, D., Robichaud, M., Moore, M., Kozel, V., and Habashi, W. Anisotropic mesh adaptation for 3d flows on structured and unstructured grids. Comput. Methods Appl. Mech. Engrg. 189 (2000), 1205–1230.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Alauzet, F., Loseille, A., Dervieux, A., Frey, P. (2006). Multi-Dimensional Continuous Metric for Mesh Adaptation. In: Pébay, P.P. (eds) Proceedings of the 15th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34958-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34958-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34957-0

  • Online ISBN: 978-3-540-34958-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics