Skip to main content

Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow

  • Conference paper
Proceedings of the 15th International Meshing Roundtable

Abstract

We describe an approach to construct hexahedral solid NURBS (Non-Uniform Rational B-Splines) meshes for patient-specific vascular geometric models from imaging data for use in isogeometric analysis. First, image processing techniques, such as contrast enhancement, filtering, classification, and segmentation, are used to improve the quality of the input imaging data. Then, lumenal surfaces are extracted by isocontouring the preprocessed data, followed by the extraction of vascular skeleton via Voronoi and Delaunay diagrams. Next, the skeleton-based sweeping method is used to construct hexahedral control meshes. Templates are designed for various branching configurations to decompose the geometry into mapped meshable patches. Each patch is then meshed using one-to-one sweeping techniques, and boundary vertices are projected to the lumenal surface. Finally, hexahedral solid NURBS are constructed and used in isogeometric analysis of blood flow. Piecewise linear hexahedral meshes can also be obtained using this approach. Examples of patient-specific arterial models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 1. Taylor C.A., Hughes T.J., Zarins C.K. “Finite element modeling of blood flow in arteries.” Computer Methods in Applied Mechanics and Engineering, vol. 158, 155–196, 1998

    Article  MATH  Google Scholar 

  2. 2. Bazilevs Y., Calo V., Zhang Y., Hughes T.J. “Isogeometric Fluid-Structure Interaction Analysis with Applications to Arterial Blood Flow.” Computational Mechanics, 2006

    Google Scholar 

  3. 3. Hughes T.J., Cottrell J.A., Bazilevs Y. “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement.” Computer Methods in Applied Mechanics and Engineering, vol. 194, 4135–4195, 2005

    Article  MATH  Google Scholar 

  4. 4. Cottrell J., Reali A., Bazilevs Y., Hughes T. “Isogeometric analysis of structural vibrations.” Computer Methods in Applied Mechanics and Engineering, 2005. In press

    Google Scholar 

  5. 5. Bazilevs Y., da Veiga L.B., Cottrell J., Hughes T., Sangalli G. “Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes.” Mathematical Models and Methods in Applied Sciences, 2006. Submitted, available as ICES report 06-04

    Google Scholar 

  6. 6. Rogers D.F. An Introduction to NURBS With Historical Perspective. Academic Press, San Diego, CA, 2001

    Google Scholar 

  7. 7. Piegl L., Tiller W. The NURBS Book (Monographs in Visual Communication), 2nd ed. Springer-Verlag, New York, 1997

    Google Scholar 

  8. 8. Bajaj C., Chen J., Xu G. “Modeling with Cubic A-Patches.” ACM Transactions on Graphics, vol. 14, 103–133, 1995

    Article  Google Scholar 

  9. 9. Sederberg T.W., Cardon D.L., Finnigan G.T., North N.S., Zheng J., Lyche T. “T-Spline Simplification and Local Refinement.” ACM Transactions on Graphics (TOG), SIGGRAPH, vol. 23, 276–283, 2004

    Article  Google Scholar 

  10. 10. Cirak F., Scott M.J., Antonsson E.K., Ortiz M., Schröder P. “Integrated modeling, finiteelement analysis, and engineering design for thin-shell structures using subdivision.” Computer-Aided Design, vol. 34, 137–148, 2002

    Article  Google Scholar 

  11. 11. Blacker T. “A New Approach to Automated Quadrilateral Mesh Generation.” Int. J. Numer. Meth. Engng, vol. 32, 811–847, 1991

    Article  MATH  Google Scholar 

  12. 12. Cook W.A., Oakes W.R. “Mapping methods for generating three-dimensional meshes.” Computers in Mechanical Engineering, pp. 67–72, 1982

    Google Scholar 

  13. 13. “CUBIT Mesh Generation Toolkit. Web site: http://sass1693.sandia.gov/cubit.”

    Google Scholar 

  14. 14. Blacker T. “The Cooper Tool.” 5th International Meshing Roundtable, pp. 13–29. 1996

    Google Scholar 

  15. 15. Shepherd J., Mitchell S., Knupp P., White D. “Methods for MultiSweep Automation.”

    Google Scholar 

  16. 16. Knupp P. “Next-Generation Sweep Tool: A Method for Generating All-Hex Meshes on Two-And-One-Half Dimensional Geometries.” 7th International Meshing Roundtable, pp. 505–513, 1998

    Google Scholar 

  17. 17. White D., Saigal S., Owen S. “Automatic Decomposition of Multi-Sweep Volumes.” Engineering With Computers, vol. 20, 222–236, 2004

    Article  Google Scholar 

  18. 18. Staten M., Canaan S., Owen S. “BMSweep: Locating Interior Nodes During Sweeping.” 7th International Meshing Roundtable, pp. 7–18, 1998

    Google Scholar 

  19. 19. Scott M., Earp M., Benzley S. “Adaptive Sweeping Techniques.” 14th International Meshing Roundtable, pp. 417–432, 2005

    Google Scholar 

  20. 20. Armstrong C., Robinson D., McKeag R., Li T., Bridgett S., Donaghy R., McGleenan C. “Medials for Meshing and More.” 4th Int. Meshing Roundtable, pp. 277–288, 1995

    Google Scholar 

  21. 21. Price M.A., Armstrong C.G., Sabin M.A. “Hexahedral Mesh Generation by Medial Surface Subdivision: I. Solids with Convex Edges.” Int. J. Numer. Meth. Engng., vol. 38, 3335–3359, 1995

    Article  MATH  Google Scholar 

  22. 22. Storti D., Turkiyyah G., Ganter M., Lim C., Stal D. “Skeleton-based modeling operations on solids.” ACM Symposium Solid Modeling Applications, pp. 141–154, 1997

    Google Scholar 

  23. 23. Quadros W.R., Owen S.J., Brewer M., Shimada K. “Finite Element Mesh Sizing for Surfaces Using Skeleton.” 13th International Meshing Roundtable, pp. 389–400, 2004

    Google Scholar 

  24. 24. Zhang Y., Bajaj C., Sohn B.S. “3D Finite Element Meshing from Imaging Data.” The special issue of Computer Methods in Applied Mechanics and Engineering (CMAME) on Unstructured Mesh Generation, vol. 194, no. 48–49, 5083–5106, 2005

    MATH  Google Scholar 

  25. 25. Zhang Y., Bajaj C. “Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data.” Computer Methods in Applied Mechanics and Engineering (CMAME), vol. 195, no. 9–12, 942–960, 2006

    Article  Google Scholar 

  26. 26. Ito Y., Shum P.C., Shih A., Soni B., Nakahashi K. “Robust generation of high-quality unstructured meshes on realistic biomedical geometry.” Int. J. Numer. Meth. Engng., vol. 65, 943–973, 2006

    Article  MATH  Google Scholar 

  27. 27. Zachariah S.G., Sanders J.E., Turkiyyah G.M. “Automated Hexahedral Mesh Generation from Biomedical Image Data:Applications in Limb Prosthetics.” IEEE Transactions on Rehabilitation Engineering, vol. 4, no. 2, 91–102, 1996

    Article  Google Scholar 

  28. 28. Verma C.S., Fischer P.F., Lee S.E., Loth F. “An All-Hex Meshing Strategy for Bifurcation Geometries in Vascular Flow Simulation.” 14th International Meshing Roundtable, pp. 363–375, 2005

    Google Scholar 

  29. 29. Thompson J.F., Soni B.K., Weatherill N.P. Grid Generation. CRC Press LLC, 1999

    Google Scholar 

  30. 30. Gursoy H.N. “Tetrahedral Finite Element Mesh Generation from NURBS Solid Models.” Engineering with Computers, vol. 12, no. 19, 211–223, 1996

    Article  Google Scholar 

  31. 31. Anderson C.W., Crawford-Hines S. “Fast Generation of NURBS Surfaces from Polygonal Mesh Models of Human Anatomy.” Technical Report CS-99-101, Colorado State University, 2000

    Google Scholar 

  32. 32. Yu T.Y., Soni B.K. “NURBS Evaluation and Utilization for Grid Generation.” 5th International Conference on Numerical Grid Generation in Computational Field Simulations, pp. 323–332, 1996

    Google Scholar 

  33. 33. Yu Z., Bajaj C. “A Fast and Adaptive Algorithm for Image Contrast Enhancement.” IEEE International Conference on Image Processing (ICIP'04), vol. 2, pp. 1001–1004, 2004

    Google Scholar 

  34. 34. Bajaj C., Wu Q., Xu G. “Level Set Based Volumetric Anisotropic Diffusion.” ICES Technical Report 301, the Univ. of Texas at Austin, 2003

    Google Scholar 

  35. 35. Tomasi C., Madcuchi R. “Bilateral filtering for gray and color images.” IEEE International Conference on Computer Vision, p. 839, 1998

    Google Scholar 

  36. 36. Yu Z., Bajaj C. “Image Segementation using Gradient Vector Diffusion and Region Merging.” 16th International Conference on Pattern Recognition, vol. 2, pp. 941–944, 2002

    Google Scholar 

  37. 37. Lorensen W., Cline H. “Marching Cubes: A High Resolution 3D Surface Construction Algorithm.” SIGGRAPH, pp. 163–169, 1987

    Google Scholar 

  38. 38. Ju T., Losasso F., Schaefer S., Warren J. “Dual Contouring of Hermite Data.” SIGGRAPH, pp. 339–346, 2002

    Google Scholar 

  39. 39. Goswami S., Dey T.K., Bajaj C.L. “Identifying Flat and Tubular Regions of a Shape by Unstable Manifolds.” 11th ACM Sympos. Solid and Physical Modeling, to appear, 2006

    Google Scholar 

  40. 40. Hughes T.J.R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, Mineola, NY, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C.L., Hughes, T.J. (2006). Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow. In: Pébay, P.P. (eds) Proceedings of the 15th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34958-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34958-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34957-0

  • Online ISBN: 978-3-540-34958-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics