Skip to main content

Personalizing E-Commerce with Data Mining

  • Chapter
E-Service Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 37))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Allen, D. Kania, and B. Yaeckel. One-to-One Web Marketing: Build a Rela-tionship Marketing Strategy One Customer at a Time, 2nd Edition. John Wiley & Sons, 2001.

    Google Scholar 

  2. AWStats. Logfile Analyzer. http://awstats.sourceforge.net/docs/, 2005.

  3. B. L. Barret. The Webalizer. http://www.mrunix.net/webalizer, 2005.

  4. P. Cabena, P. Hadjinian, R. Stadler, J. Verhees, and A. Zanasi. Discovering Data Mining: From Concept to Implementation. Prentice Hall, 1997.

    Google Scholar 

  5. Center for Democracy and Technology. CDT’s Guide to Online Privacy. http://www.cdt.org/privacy/guide/introduction, 1998.

  6. ClickTracks. http://www.clicktracks.com, 2005.

  7. Personalization Consortium. Personalization information. http://www.personalization.org/personalization.html, 2005.

  8. R. Dye. The buzz on buzz. Harvard Business Review, November-December 2000.

    Google Scholar 

  9. E-Commerce Intelligence: Measuring, Analyzing, and Reporting on Merchan- dising Effectiveness of Online Stores. Stephen gomory and robert hoch and juhnyoung lee and mark podlaseck and edith schonberg, July 1999.

    Google Scholar 

  10. H. A. Edelstein. Pan For Gold In The Clickstream. Information Week, March 2005.

    Google Scholar 

  11. M. Eirinaki and M. Vazirgiannis. Web mining for web personalization. ACM Transactions on Internet Technologies, 3(1):1-27, 2003.

    Article  Google Scholar 

  12. X. Fu, J. Budzik, and K.J. Hammond. Mining navigation history for recom- mendation. In Proceedings of the International Conference on Intelligent User Interfaces, pages 106-112, 2000.

    Google Scholar 

  13. Google. Advertising Programs. http://www.google.com/ads, 2005.

  14. D. R. Greening. Data Mining on the Web. Web Techniques, January 2000.

    Google Scholar 

  15. Beagle Research Group. Turning browsers into buyers with value-based routing: Methodology enhanced e-commerce, white paper. http://www.beagleresearch.com/DownloadPDFfiles/ProficientFINAL.pdf, 2004.

  16. A. Hughes. 25 Key Database Marketing Techniques. DM News, January 2005.

    Google Scholar 

  17. P. Kent. Search Engine Optimization For Dummies. Wiley Publishing, Inc., 2004.

    Google Scholar 

  18. R. Kohavi, L. Mason, R. Parekh, and Z. Zheng. Lessons and challenges from mining retail e-commerce data. Machine Learning, 57(1-2):83-113, 2004.

    Article  Google Scholar 

  19. G. Linden, B. Smith, and J. York. Amazon.com Recommendations: Item-to- Item Collaborative Filtering. IEEE Internet Computing, Industry Report, Jan-uary/February 2003.

    Google Scholar 

  20. Microsoft. MSN Search. http://search.msn.com, 2005.

  21. B. Mobasher, R. Cooley, and J. Srivastava. Automatic personalization based on web usage mining. Communications of the ACM, 43 (8): 142-151, 2000.

    Article  Google Scholar 

  22. B. Mobasher, N. Jain, E. Han, and J. Srivastava. Web mining: Pattern discovery from world wide web transactions. Technical Report TR-96050, Department of Computer Science, University of Minnesota, M inneapolis, 1996.

    Google Scholar 

  23. W. Moe and P. Fader. Capturing evolving visit behavior in clickstream data. Journal of Interactive Marketing, 18(1):5-19, 2004.

    Article  Google Scholar 

  24. M. Monticino. Web-analysis: Stripping away the hype. Computer, 31(12):130-132,1998.

    Article  Google Scholar 

  25. S. Oberbeck. Internet shopping is big business, but more can be done by e-retailers. The Salt Lake Tribune, December 2004.

    Google Scholar 

  26. Omniture, Inc. SiteCatalyst 12. http://www.omniture.com/global/sitecatalyst, 2005.

  27. M. Perkowitz and O. Etzioni. Towards adaptive Web sites: conceptual frame-work and case study. Computer Networks, 31 (11-16): 1245-1258, 1999.

    Article  Google Scholar 

  28. E. Rosen. The Anatomy of Buzz. New York: Doubleday, 2000.

    Google Scholar 

  29. P. Rusmevichientong, S. Zhu, and D. Selinger. Identifying early buyers from purchase data. In Proceedings of the Tenth ACM SIGKDD International Con-ference on Knowledge Discovery and Data Mining, pages 671-677, 2004.

    Google Scholar 

  30. Sane Solutions LLC. NetTracker Web Analytics Solutions. http://www.sane.com, 2005.

  31. M. Spiliopoulou and C. Pohle. Data mining for measuring and improving the success of web sites. Data Mining and Knowledge Discovery, 5 (1-2): 85-114, 2001.

    Article  MATH  Google Scholar 

  32. J. Srivastava, R. Cooley, M. Desphande, and P-M. Tan. Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations, 1 (2), 2000.

    Google Scholar 

  33. Alta Vista. http://www.altavista.com, 2005.

  34. S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge University Press, 1994.

    Google Scholar 

  35. World Wide Web Consortium (W3C). Platform for Privacy Preferences (P3P). http://www.w3.org/P3P, 2004.

  36. Yahoo! Inc. http://www.yahoo.com, 2005.

  37. Yahoo! Inc. LAUNCHcast. http://launch.yahoo.com, 2005.

  38. Yahoo! Inc. Search Marketing. http://searchmarketing.yahoo.com, 2005.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smith, M., Wenerstrom, B., Giraud-Carrier, C., Lawyer, S., Liu, W. (2007). Personalizing E-Commerce with Data Mining. In: Lu, J., Zhang, G., Ruan, D. (eds) E-Service Intelligence. Studies in Computational Intelligence, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37017-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37017-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37015-4

  • Online ISBN: 978-3-540-37017-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics