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1 Introduction 

Telecommunication networks, oil platforms, chemical plants and airplanes 
consist of a great number of subsystems and components that are all sub-
ject to failure.  Reliability theory studies the failure behavior of such sys-
tems in relation to the failure behavior of their components, which is often 
easier to analyze. However, even for the most basic reliability models, the 
overall reliability of the system can be difficult to compute. In this chapter 
we give an introduction to modern Monte Carlo methods for fast and accu-
rate reliability estimation.  We focus in particular on Monte Carlo tech-
niques for network reliability estimation, and network design. 

Network Reliability Estimation 

It is well known that for large networks the exact calculation of the net-
work reliability is difficult (indeed, this problem can be shown to be #P-
complete [6,24]), and hence simulation becomes an option. However, in 
highly reliable networks such as modern communication networks, net-
work failure is very infrequent, and direct simulation – also called crude 
Monte Carlo (CMC) simulation – of such rare events is computationally 
expensive. Various techniques have been developed to speed up the esti-
mation procedure. For example, Kumamoto proposed a very simple tech-
nique called Dagger Sampling to improve the CMC simulation [20]. 
Fishman proposed Procedure Q, which can provide reliability estimates as 
well as bound [13]. Colbourn and Harms proposed a technique that will 
provide progressive bounds that will eventually converge to an exact reli-
ability value [7]. Easton and Wong proposed a sequential construction 
method [10]. Elperin, Gertsbakh and Lomonosov proposed Evolution 
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Models for estimating the reliability of highly reliable networks [11, 12, 
22]. Hui et al. [18] proposed a hybrid scheme that provides bounds and can 
provide a speed-up by several orders of magnitude in certain classes of 
networks. They also proposed another scheme [19] which employs the 
Cross-Entropy technique to speed-up the estimation in general classes of 
networks.  Other relevant references on network reliability include [15, 31, 
32]. We note that the network reliability in this chapter is always consid-
ered in the static, that is, non-repairable, case. However, for repairable sys-
tems a similar approach can be employed if instead of the system reliabil-
ity the system availability is used. We will briefly discuss this issue in 
Section 2. 

Network Design 

Accurate reliability estimation is essential for the proper design, planning 
and improvement of an unreliable network, such as a telecommunications 
network. A typical question in network design is, for example, which 
components (links, nodes) to purchase, subject to a fixed budget, in order 
to achieve the most reliable network. There are several reasons why net-
work planning is difficult. Firstly, the problem in question is a complex 
constrained integer programming problem. Secondly, for large networks 
the value of the objective function – that is, the network reliability – is dif-
ficult or impractical to evaluate [6, 24]. Thirdly, when Monte Carlo simu-
lation is used to estimate the network reliability, the objective function be-
comes noisy (random). Finally, for highly reliable networks, sophisticated 
variance reduction techniques are required to estimate the reliability accu-
rately. The literature on network planning is not extensive, and virtually all 
studies pertain to networks for which the system reliability can either be 
evaluated exactly, or sharp reliability bounds can be established. Colbourn 
and Harms [7] proposed a technique that provides progressive bounds that 
eventually converge to an exact reliability value. Cancela and Urquhart [4] 
employed a Simulated Annealing scheme to obtain a more reliable alterna-
tive network, given a user-defined network topology. Dengiz et al. used a 
Genetic Algorithm to optimize the design of communication network to-
pologies subject to the minimum reliability requirement [9]. Yeh et al. [33] 
proposed a method based on a Genetic Algorithm to optimize the k-node 
set reliability subject to a specified capacity constraint. Reichelt et al. used 
a Genetic Algorithm in combination with a repair heuristic to minimize the 
network cost with specified network reliability constraints [25]. 

 
We show that the Cross-Entropy (CE) method [28] provides an effective 

way to solve both the network reliability estimation and the network plan-
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ning/improvement problems. The CE method was first introduced in [26] 
as an adaptive algorithm for estimating probabilities of rare events in com-
plex stochastic networks. It was soon realized [27, 29] that it could be used 
not only for rare event simulations but for solving difficult combinatorial 
optimization problems as well. Moreover, the CE method is well-suited for 
solving noisy optimization problems.  A tutorial on the CE method can be 
found in [8], which is also available on-line from the CE homepage: 
http://www.cemethod.org. 

The rest of the chapter is organized as follows. Network reliability is in-
troduced in Section 2. Various Monte Carlo simulation techniques are de-
scribed in Section 3. In Section 4, we present how the CE method can be 
applied to improve the Monte Carlo simulations. The more challenging 
problem of reliability optimization is tackled in Section 5 using the CE 
method. In Section 6, we show how to adapt the CE method to a general-
ized optimization problem in the context of network recovery and exten-
sion. 

2 Reliability 

The most basic mathematical model to describe complex unreliable sys-
tems is the following (see for example [1]): Consider a system that consists 
of m components. Each component is either functioning or failed. Suppose 
that the state of the system is also only functioning or failed. We wish to 
express the state of the system in term of the states of the components.  
This can be established by defining binary variables xi, i = 1,…,m repre-
senting the states of the components: xi = 1 if the i-th component works, 
and 0 else. The state of the system, s say, is a binary variable as well (1 if 
the system works and 0 else). We assume that s is completely determined 
by the vector x=(x1,…,xm) of component states. In other words, we assume 
that there exists a function ϕ : {1,0}m→{1,0} such that 
 ( ).s ϕ= x  
This function is called the structure function of the system.  To determine 
the structure function of the system it is useful to have a graphical repre-
sentation of system. 

Example 1 

Suppose a four-engine airplane is able to fly on just one engine on each 
wing. Number the engines 1, 2 (left wing) and 3, 4 (right wing). The net-
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work in Fig.1 represents the system symbolically. The structure function 
can be written as 

 
 ( ) ( )( )( ) ( )( )( )1 2 3 41 1 1 1 1 1 .x x x xϕ = − − − − − −x  

 
 

            

 

 

 
Fig. 1. An airplane with 4 engines, the system works if there is a  

“path” from A to B. 

A system that only functions when all components are operational is 
called a series system. The structure function is given by 

 ( ) { }1 1
1

min , , .
m

m m
i

ix x x x xϕ
=

= = = ∏x … "  

A system that functions as long as at least one component is operational is 
called a parallel system. Its structure function is  

 ( ) { } ( ) ( )1 1
1

max , , 1 1 1 .
m

m m
i

ix x x xϕ
=

= = − − −x … " � x≡  

A k-out-of-m system is a system, which works if and only if at least k of 
the m components are functioning. 

We mention two well-know techniques for establishing the structure 
function. The first is the modular decomposition technique. Often a system 
consists of combinations of series and parallel structures. The determina-
tion of the structure function for such systems can be handled in stages. 
The following example explains the procedure. Consider the upper-most 
system in Fig. 2. We can view the system as consisting of component 1 
and modules 1* and 2*. This gives the second system in Fig. 2. Similarly, 
we can view this last system as a series system consisting of component 1 
and module 1** (last system in Fig. 2). 
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Fig. 2. Decomposition into modules 

Now define s as the state of the system, z1 as the state of module 1**, yi 
the state of module i* and xi the state of component i. Then, working 
“backwards”, we have 

 ( )( )
1 1

1 1 2

1 2 3 2 4 5

,
1 1 1 ,

and .

s x z
z y y
y x x y x x

=

= − − −

= =

 

Successive substitution gives 
 ( ) ( )( )( )1 2 3 41 1 1s x x x x xϕ = = − − −x 5 .  

A second technique for determining structure functions is the method of 
paths and cuts. Here, the structure function is assumed to be monotone, 
that is, x < y ⇒ ϕ(x) ≤ ϕ(y), for all vectors x and y, where x < y means that 
xi  ≤ yi for all i and xi < yi for at least one i.  A minimal path vector (MPV) 
is a vector x such that ϕ(x) = 1 and ϕ(y) = 0 for all y < x.  A minimal cut 
vector (MCV) is a vector x such that ϕ(x) = 0 and ϕ(y) = 1 for all y > x.  
The minimal path set corresponding to the MPV x is the set of indices i for 
which xi = 1.  The minimal cut set corresponding to the MCV x is the set of 
indices i for which xi = 0. 

The minimal path and cut sets determine the structure function. Namely, 
let P1,…,Pp be the minimal path sets and K1,…,Kk be the minimal cut sets 
of a system with structure function ϕ. Then, 

 ( )
1

,
j

p

i
i Pj

xϕ
∈=

= ∏x �  

and 
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 ( )
1

.
j

k

i
j i K

xϕ
= ∈

= ∏x �  

The first equation is explained by observing that the system works if and 
only if there is at least one minimal path set with all components working. 
Similarly, the second equation means that the system working if and only 
if at least one component is working for each of the cut sets. 

Example 2 (Bridge Network) 

Consider the simple network in Fig.3, called a bridge network. The bridge 
network will serve as a convenient reference example throughout this 
chapter.  Here we have five unreliable edges, labelled 1,…,5. The network 
is operating if the two terminal nodes A and B are connected by opera-
tional edges. 

A B

1

2

3

4

5

 
Fig. 3. Two-terminal bridge network 

The minimal path sets are {1,4}, {2,5}, {1,3,5}, {2,3,4}, and the minimal 
cuts sets are {1,2}, {4,5}, {1,3,5}, {2,3,4}. The minimal path vector corre-
sponding to the minimal path set {1,4} is the vector (1,0,0,1,0). The mini-
mal cut vector corresponding to the minimal cut set {1,2} is the vector 
(0,0,1,1,1). It follows that the structure function ϕ is given by 

( ) ( )( )( )( )1 3 5 2 3 4 1 4 2 51 1 1 1 1 .x x x x x x x x x xϕ = − − − − −x  (1) 

2.1 Reliability function 

We now turn to the case where the system's components are random.  The 
reliability of a component is defined as the probability that the component 
will perform a required function under stated conditions for a stated period 
of time. Consider a system with m components and structure function ϕ, 
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where the state of each component i is represented by a random variable 
Xi, with 

 
1 with probability

1, , .
0 with probability 1

i
i

i

p
X i m

p
⎧

= =⎨ −⎩
…  

We gather the component reliabilities pi into a vector p = (p1,…,pm). The 
reliability of the system, i.e., the probability that the system works, is 

 
 [ ] ( ) ( )System works 1 ,ϕ ϕ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦X XP P E  

 
where X is the random vector (X1,…,Xm). Under the assumption that the 
component states are independent, P[ϕ(X) = 1] can be expressed in terms 

of p1,…,pm. The function r(p) = P[ϕ(X) = 1] is called the reliability func-

tion of the system. Note that for the series and parallel systems the reliabil-

ity function is and , respectively.   ( ) 1

m
ii

r p
=

= ∏p ( ) 1

m
ii

r
=

=p � p

Example 3 

For the bridge system we have by (1) 
 

( ) ( )( ) ( )( )1 3 5 2 3 4 2 5 1 41 1 1 1 1 .X X X X X X X X X XXϕ = − − − − −  
 

Using the fact that Xi = Xi
2, the expansion of ϕ (X) can be written as 

 
1 3 5 2 3 4 2 5 1 4 1 2 3 5

1 2 4 5 1 3 4 5 1 2 3 4 2 3 4 5

1 2 3 4 5

( )

2 .

X X X X X X X X X X X X X X
X X X X X X X X X X X X X X X X
X X X X X

ϕ = + + + −
− − − −
+

X
 

 
Because all the terms are products of independent random variables the re-
liability r = r(p) is given by 

 

  1 3 5 2 3 4 2 5 1 4 1 2 3 5 1 2 4 5

1 3 4 5 1 2 3 4 2 3 4 5 1 2 3 4 52 .
r p p p p p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p p p
= + + + − −

− − − +
 

For highly reliable networks it is sometimes more useful to analyze or es-
timate the system unreliability  
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 1 .r r= −  
In this case the system unreliability is equal to  

 1 2 2 3 4 1 2 3 4 1 3 5 1 2 3 5 4 5

1 2 4 5 1 3 4 5 2 3 4 5 1 2 3 4 52 ,
r q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q
= + − + − +

− − − +
 

where qi = 1–pi is the unreliability of component i, i = 1,…,5. 

Remark 1 (Availability) 

A concept closely related to reliability is the availability of a repairable 
system, defined as the long-run average fraction of the time that the system 
works.  

Consider the simplest model of a repairable system where the system 
state is, as before, given by a structure function . Suppose that each 

component  has a lifetime with cdf  and is being repaired according to 
a repair time cdf . Assume that all the life and repair times are inde-
pendent of each other. Note that the component state process 

 alternates between “up” and “down” (1 and 0), and forms a 
so-called alternating renewal process. The availability, , of compo-
nent  time  is defined as the probability that it works at time , that is,  

( )xϕ

i Fi

iG

{ ( ), 0}iX t t ≥
( )ia t

i t t
[ ]( ) ( ) 1i ia t X t= P� = . From renewal theory the long-run average fraction 

of the time that works, the limiting availability of i , is given by  i

[ ]lim ( ) lim ( ) 1 ,i
i i it t

i i

ua a t X t
u d

P
→∞ →∞

= = = =
+

 

where is the expected lifetime or Mean Time To Failure (MTTF), and 
 is the expected repair time or Mean Time To Repair (MTTR) of com-

ponent i . Thus, the limiting availability depends only on the means of the 
distributions. 

iu

id

The system availability at time t , say, is given by ( )a t
[ ] 1( ) ( ) 1 ( ( ), , ( )).ma t t r a t a t= = =XP …  

For each , converges to a constant , as . Since  is a con-
tinuous function, we therefore have  

i ( )ia t ia t →∞ r

  1( ) ( , , ),ma t r a a→ …
as t . This means that all the theory in this chapter for non-repairable 
or static systems can be applied to repairable systems, provided the notion 
of reliability is replaced by that of (limiting) availability.  

→∞
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2.2 Network Reliability 

The reliability modeling of systems such as the airplane engines in Fig. 1 
and the bridge network in Fig. 3 can be generalized to network reliability 
systems in the following way.  Consider an undirected graph (or network) 
G(V,E,K), where V is the set of n vertices (or nodes), E is the set of m edges 
(or links), and K ⊆ V is a set of terminal nodes, with |K| ≥ 2. Associated 
with each edge e ∈ E is a binary random variable Xe, denoting the failure 
state of the edge. In particular, {Xe = 1} is the event that the edge is opera-
tional, and {Xe = 0} is the event that it has failed. We label the edges from 
1 to m, and call the vector X = (X1,…,Xm) the (failure) state of the network, 
or the state of the set E. Let S be the set of all 2m possible states of E. 

Notation A 

For A ⊆ E, let x = (x1,…,xm) be the vector in {0,1}m with  

  
1,

.
0,i

i
x

i
∈⎧

= ⎨ ∉⎩

A
A�

We can identify x with the set A. Henceforth we will use this identification 
whenever this is convenient. 

 
Next, we assume that the random variables {Xe, e∈E} are mutually in-

dependent. Let pe and qe denote the reliability and unreliability of e∈E re-

spectively. That is pe = P[Xe = 1], and qe = P[X e= 0] = 1 – pe. Let p = 

(p1,…,pm). The reliability r = r(p) of the network  is defined as the prob-
ability of K being connected by operational edges. Thus, 

( ) ( ) [ ]

( ) ( )1

1

1 ,ii

m
xx

i i
i

r

p p

ϕ ϕ

ϕ

∈

−

∈ =

= =⎡ ⎤⎣ ⎦

⎡ ⎤= −⎣ ⎦

∑

∑ ∏
x

x

X x X

x

E P
S

S

= x�

 (2) 

where 

( )
1 if  is connected,
0 otherwise.

ϕ
⎧

= ⎨
⎩

x
K

 (3) 
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3 Monte Carlo Simulation 

The evaluation of network reliability in general is a #P-complete problem. 
When direct evaluation, e.g., via (2), is not feasible, estimation via Monte 
Carlo simulation becomes a viable option.  The easiest way to estimate the 
reliability r (or unreliability r ) is to use CMC simulation, that is, let 
X(1),…,X(N) be independent identically distributed random vectors with the 
same distribution as X. Then 

 ( )CMC ( )
1

1ˆ
N

i
i

r
N

ϕ
=

= ∑ X  

is an unbiased estimator of r. Its sample variance is given by 

 ( ) ( )
CMC

1
ˆvar .

r r
r

N
−

=  

An important measure for the efficiency of an estimator is its relative er-

ror, defined as

�A

( )Std ⎡ ⎤
⎣ ⎦E�A �A . The relative error for is thus given by CMCr̂

 ( ) ( )
[ ]( )

( )CMC

CMC

CMC

2 2

ˆvar 1 1ˆre .
ˆ

r r r N rr
r Nr

−
r

−
= = =

E
 

Similarly, the relative error for � CMCr is 

 �( )CMC
1re .rr
N r
−

=  

This shows that for small r (which is typical in communication networks), 
a large sample size is needed to estimate r accurately. When r is small, 
the event that the terminal nodes are not connected is a rare event. Next, 
we discuss methods to increase the accuracy of simulation procedures that 
work well for rare events. 

3.1 Permutation Monte Carlo and the Construction Process 

A more efficient way than CMC for estimating the static network unreli-
ability is Permutation Monte Carlo simulation [11]. This approach can be 
applied to estimating equilibrium renewal parameters (see [21]) such as 
availability described in Remark 1. The idea is as follows. Consider the 
network G(V,E) in which each edge e has an exponential repair time with 
repair rate λ(e) = – ln(qe) where qe is the failure probability of e. That is, 
the repair time of edge e is exponentially distributed with mean 1/λ(e). We 
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assume that at time t = 0 all edges are failed and that all repair times are 
independent of each other. The state of e at time t is denoted by Xe(t) and 
the state of the edge set E at time t is given by the vector X(t), defined in a 
similar way as before. Thus, (X(t), t ≥ 0) is a Markov process [2, 16, 23] 
with state space {0,1}m or, in view of Notation A, a Markov process on the 
subsets of E. This process is called the Construction Process (CP) of the 
network. 

Let Π denote the order in which the edges come up (become opera-
tional), and let S0, S0+S1,…, S0+…+Sm-1 be the times when those edges are 
constructed. Hence, the Si are sojourn times of (X(t), t ≥ 0). Π is a random 
variable which takes values in the space of permutations of E denoted by 
Ξ. For any permutation π = (e1,…,em) define 

 

 { }
( ) ( )

0

1

,
\ , 1 1

,
i

i i i

i
e

e i m

e
E

�E E

E E

Eλ λ
−

∈

,
=

= ≤ ≤ −

= ∑
 

and let  
 ( ) ( ){ }b min \ 1ii

π ϕ= =E E  

be the critical number of π, that is, the number of repairs required to bring 
up the network.  From the general theory of Markov processes it is not dif-
ficult to see that 

 [ ] ( )
( )1 1

.
m

j

j j

eλ
π

λ= −

Π = = ∏ E
P �  

Moreover, conditional on Π, the sojourn times S0,…,Sm-1 are independent 
and each Si is exponentially distributed with parameter λ(Ei), i = 0,…,m–1. 

Note that the probability of each edge e being operational at time t = 1 is 
pe. It follows that the network reliability at time t = 1 is the same as in 
equation (2). Hence, by conditioning on Π we have 
 ( )( ) [ ] ( )( )1 1r

π

1 | ,ϕ π ϕ π
∈Ξ

⎡ ⎤ ⎡= = Π = = Π⎣ ⎦ ⎣ ⎤= ⎦∑X XE P �  P �  

or 

[ ] ( )( )1 1r r
π

0 | .π ϕ
∈Ξ

π⎡ ⎤= − = Π = = Π =⎣ ⎦∑ XP � P �  (4) 
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Using the definitions of Si and b(π), we can write the last probability in 
terms of convolutions of exponential distribution functions. Namely, for 
any t ≥ 0 we have 

( )( ) ( )

( )
( ){ }

0 b 1

0 b

0 | |

1 Conv 1 exp .ii

t S S t

t

π

π

ϕ π π

λ

−

≤ <

⎡ ⎤⎡ ⎤= Π = = + > Π =⎣ ⎦ ⎣ ⎦

⎡ ⎤= − − −⎣ ⎦

X

E

P � P " �
 (5) 

Let 

( ) ( )( )g 1 0 |C ,π ϕ π⎡ ⎤= = Π =⎣ ⎦XP  (6) 

as given in equation (5). Equation (4) can be rewritten as  

( )Cg ,r ⎡ ⎤= Π⎣ ⎦E  (7) 

and this shows how the CP simulation scheme works. Namely, for 
Π(1),…,Π(N) independent identically distributed random permutations, each 
distributed according to Π, one has 

� ( )( )
1

1
CP

N

c i
i

r g
N =

= Π∑  (8) 

as an unbiased estimator for r .   We note that the CP estimation scheme is 
a particular instance of conditional Monte Carlo estimation. It is well 
known that conditioning always reduces variance; see for example Sec-
tion 4.4 of [30]. As a result, the CP estimator has a smaller variance than 
the corresponding CMC estimator. However this accuracy comes at the 
expense of more complex computations. 

3.2 Merge Process 

A closer look at the evolution of the CP process reveals that many of the 
above results remain valid when we merge various states into “super 
states” at various stages of the process. This is known as the Merge Proc-
ess (MP). We briefly describe the ideas below (see [22] for a detailed de-
scription and [21] for its application to estimating equilibrium renewal pa-
rameters) 
   To begin with, any subset F ⊆ E of edges partitions the nodeset V into 
connected components known as a proper partition. Let σ  = {V1,…,Vk} be 
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the proper partition of the subgraph G(V,F) (including isolated nodes, if 
any). Let Ii denote the edge-set of the induced subgraph G(Vi). The set Iσ = 
I1∪…∪Ik of inner edges, that is, the edges within the components, is the 
closure of F (denoted by 〈F〉). Denote its complement (the inter-
component edges) by Eσ = E \ Iσ. Fig. 4 shows an example of a complete 6-
node graph (K6), a subgraph, and its corresponding closure. 

 
Fig. 4. K6, a subgraph, and its corresponding closure. 

Let L(G) be the collection of all proper partitions of G(V,E). The states in 

L(G) are ordered by the relation τ≺σ  ⇔  Iτ ⊂ Iσ (that is, σ is obtained by 

merging components of τ). Any state σ in L(G) has a transition path to the 

terminal state σω = G. Therefore L(G) is a lattice. 

We consider now the CP (X(t)) of the network. By restricting the proc-
ess (X(t)) to L(G) we  obtain another Markov process (X(t)), called the 

Merge Process (MP) of the network. This process starts from the initial 
state σ0 of isolated nodes and ends at the terminal state σω corresponding 
to G(V,E). Figure 5 shows L(K4), the lattice of all proper partitions  of the 

complete 4-node graph K4, grouped into 4 different levels according to the 
number of components. The arrows show the direct successions in L(K4),  

thus forming the transition graph of the Markov process (X(t)). 
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Fig. 5. State transition diagram for merge process of K4. 

For each σ ∈ L(G) the sojourn time in σ has an exponential distribution 

with parameter ( ) ( )e
e

σ
λ σ λ

∈
= ∑ E

, independent of everything else. 

Moreover, the transition probability from τ to σ (where σ is a direct suc-
cessor of τ) is given by: 

 
( ) ( )

( )
λ τ λ σ

λ τ
−

 

Next, in analogy to the results for the CP, we define a trajectory of (X(t)) 

as a  sequence θ  = (σ0,…,σb), where b = b(θ) is the first index i such that 
σi is “up”, that is, the network is operational. Since ϕ(X(t)) = ϕ(X(t)), we  

have 
 ( )( ) ( )M1 0 gr ϕ⎡ ⎤ ,⎡ ⎤= = = Θ⎣ ⎦⎣ ⎦P X E  

where Θ is the random trajectory of (X(t)). For each outcome θ  = 

(σ0,…,σb) of Θ, gM(θ) is given by 

( ) ( )( )

( )

M

0 b 1

g 1 0 |

| ,S S θ

θ ϕ θ

θ−

⎡ ⎤= = Θ =⎣ ⎦
⎡ ⎤= + + Θ =⎣ ⎦

P X

P "
 (9) 

where Si is the sojourn time at σi. Therefore, gM(θ) is given  by the value 
 

( )
( ){ }

0 b
1 Conv 1 exp ,ii

t
θ

λ σ
≤ <

⎡ ⎤− − −⎣ ⎦  
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at t = 1. Let Θ(1),…,Θ(N) be independent identically distributed random tra-
jectories distributed according to Θ. Then, 

�
( )( )MP M

1

1 g
N

i
i

r
N =

= Θ∑  
(10) 

is an unbiased estimator for r .  It can be shown that the MP estimator has 
a smaller variance than the CP estimator, due to the state space reduction. 

4 Reliability Estimation using the CE Method 

Consider the bridge network in Example 2. We assume the typical situa-
tion where the edges are highly reliable, that is, the qi are close to 0. The 
probability of the rare event {ϕ(X)=0} is very small under CMC simula-
tion and hence the accuracy of this sampling scheme is low. One way to 
combat the low accuracy problem is to “tilt” the probability mass function 
(pmf) of the component state vector X so that the rare event happens more 
often, and then multiply the structure function with a likelihood ratio to un-
bias the estimate. More precisely, let f(x) = P[X = x] be the original pmf  

of X and g(x) be a new pmf. Then, 
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where W(x) is the likelihood ratio for an outcome x, and Eg is the expecta-

tion under the pmf g. This indicates that we can estimate r also via 

 ( )( ) ( )( )( )
1

1 W 1
N

i i
iN

ϕ
=

−∑ X X ,  

where X(1),…,X(N) is a random sample from g. This is the well-know con-
cept of Importance Sampling (IS). 
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Example 4 (Bridge Example (Continued)) 

Suppose that the edge failure probabilities are all the same, qi=0.001. After 
choosing to “tilt” their probabilities to qi’=0.5, the likelihood ratio be-
comes 

 ( )
( )( )5

1
5

0.999 0.001 1
W .

0.5
i ii

X X
=

+ −
= ∏X  

Table 1 shows a simulation result with 105 samples. With a network failure 
probability of about two in a million, the CMC with 105 samples cannot es-
timate r accurately, while the CMC with IS (CMC-IS) delivers a much 
better result. This simple example demonstrates how Importance Sampling 
can help improve estimate accuracy. 

Table 1. Results for CMC and CMC-IS 

Scheme �r  lre  
CMC 0.000e-00 undefined 
CMC-IS 2.022e-06 2.22e-00 
True r  2.002e-06  

 
However, the question of how we should tilt the parameters still remains 
open and that is where the CE technique can help. Before we discuss the 
CE technique, we first look at how to construct the ideal probability meas-
ure. 

Consider the scenario where one wants to estimate the expectation of 
a positive function H(X). In the case of network reliability estimation, 

A

r=A and H(X) = 1–ϕ(X). It is possible to construct a probability measure 
such that one can accurately estimate Awith zero sample variance. Namely, 
since 
 ( ) ( ) ( ) ( ) ( )f H f W H

∈ ∈

= =∑ ∑
x x

x x x x x
S S

A ,  

if we take ( ) ( ) ( ) ( )g g* f H= ≡x x x x A , then ( ) ( )W H=x A x and thus 

under g* we have ( ) ( )W H =X X A with probability 1. In other words, we 
only need one sample from g* to obtain an exact estimate. Obviously such 
construction is of little practical use, as we need to know in order to con-
struct g*(x). Moreover, f often comes from a parametric family f(x;u) 
where  u is a parameter vector. One would like to keep g in the same fam-
ily, that is g(x)=f(x;v) such that the likelihood ratio W(x;u,v)=f(x;u)/f(x;v) 
is easier to compute. 

A
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4.1 CE Method 

It is not our intention to give a detailed account of the CE method for esti-
mation – for this we refer to [8] and [28] – but in order to keep this chapter 
self-contained, we mention the main points. Consider the problem of esti-
mating 

( ) ( ) ( )H H ;dF⎡ ⎤= =⎣ ⎦ .∫u Y y y uEA  (11) 

Here H(y) is some positive function of y = (y1,…,ym), and F(y;u) is a prob-
ability distribution function with pmf or probability density function (pdf) 
f(y;u) that depends on  some reference parameter u. We consider for sim-
plicity only the pdf case. The expectation operator under which the random 
vector Y = (Y1,…,Ym) has pdf  f(y;u) is denoted by Eu. We can estimate 

using IS as A

( )( ) ( )( )
1

1 H W ; ,
N

i i
iN =

= ∑ Y Y u�A ,v  (12) 

where Y(1),…,Y(N) is a random sample from f(⋅; v) –  using a different ref-
erence parameter v – and  

( ) ( )
( )

f ;
W ; ,

f ;
=

Y u
Y u v

Y v
,  

(13) 

Is the likelihood ratio. We can choose any reference vector v in 
equation (12) but we would like to use one that is in some sense “close” to 
the ideal (zero variance) IS pdf 

 ( ) ( ) ( )H f ;
g* .=

y y u
y

A
 

One could choose the parameter that minimizes the sample variance 
 ( ) ( )( )var H W ; ,v Y Y u v  

 through the optimization program 

( ) ( )2 2min H W ; , .⎡ ⎤⎣ ⎦v
Y Y u vE  (14) 

The optimal solution of program (14) is typically hard to find and often not 
available analytically since the variance of H(Y)W(Y;u,v) is not either. 
One can view the variance as a “distance” measure, and the program (14) 
is to find a parameter vector v that minimizes the “variance distance” be-
tween g*(y) and g(y). An alternate distance measure is the Kullback-Leiber 
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CE distance (or simply CE distance). The CE distance between two prob-
ability densities f(y) and g(y) can be written as 

 ( ) ( ) ( )
( )

( )
( ) ( )f f

f,g f ln ln .
g g

d d= =∫ ∫
y y

Fy y y
y y

D  

The optimal reference parameter in the CE sense (that is, for which 
D(g*,f(⋅;v)) is minimal) is then 
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Since H(y) ln(H(y) f(y;u)) does not depend on v, we have 
 ( ) ( )* arg max H ln f ;⎡ ⎤= ⎣ ⎦u

v
v y y vE  

Note that the expectation is under the original pdf f(y;u). However, we can 
apply the IS technique and use any pdf with parameter w to get the same 
optimal solution 

( ) ( ) ( )* arg max H W ; , ln f ; .⎡ ⎤= ⎣ ⎦w
v

v y y u w y vE  (15) 

Therefore, we can estimate the optimal CE reference vector as the solution 
of the iterative procedure 

( )( ) ( )( ) ( )( )1
1

1arg max H W ; , ln f ; ,
N

t ti i i
iN −
=

= ∑
v

v Y Y u v Y v  (16) 

where at each iteration t a random sample from f(⋅;vt-1) is  taken. The solu-
tion of program (16) can often be determined analytically. One example is 
when f is in an exponential family of distributions. 

4.2 Tail Probability Estimation 

In the rare-event setting, H(Y) is of the form H(Y) = I{S(Y)≥ γ} where I is 
the indicator function, γ is a constant, and  

( )S γ⎡ ⎤= ≥⎣ ⎦YPA  (17) 
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is a small tail probability. The function S is called the performance func-
tion. For rare-event estimation problems, program (16) is difficult to carry 
out because the rareness of the event causes most of the indicators H(Y(i)) 
to be zero. For such problems, a two-phase CE procedure is employed: 
Apart from the reference parameter v, we also choose to update the level γ, 
creating a sequence of pairs {(vt,γt)} with the goal of estimating the opti-
mal CE reference parameter v*.  Starting with v0 = u (the original or nomi-
nal parameter vector), the updating formulas are as follows: 

Given a random sample Y(1),…,Y(N) from f(⋅; vt-1), we  use the best per-
forming ρ–portion of the samples. Let γt be the sample (1–ρ)–quantile of 
the performances S(Y(i)),  i = 1,…,N, provided the sample quantile is less 
than γ; otherwise we set γt  equal to γ. In other words, set 

( )( ){ }1
min , ,t N

S
ρ

γ γ
⎡ − ⎤⎢ ⎥

=  
(18) 

where S(j) is the j-th order-statistic of the performances. Using the same 
sample, we let 

( )( ){ } ( )( ) ( )(1
1

1arg max I S W ; , ln f ; .
N

t t ti i
iN

γ −
=

= ≥∑
v

v Y Y u v )iY v  (19) 

When γt reaches γ, we stop the iteration procedure and take vt as the esti-
mate of v*. 

Again, it is important to understand that in many cases an explicit for-
mula for vt can be given, that is, we do not need to “solve” the optimiza-
tion problem (19). Provided ρ is small and N is large enough, vt in pro-
gram (19) converges to the optimal v* in program (15) (see [28]). 

4.3 CMC and CE (CMC-CE) 

The standard interpretation of the CMC scheme does not naturally allow 
for the application of the CE method. However, if we interpret CMC sam-
pling using the CP framework, the CE method can be applied naturally. In-
stead of sampling the up/down state of individual edges, we can sample the 
up time of each edge. Then we check if the network is functioning at time 
t=1, and this probability is the network reliability estimate. In order to 
maintain the CMC features, we treat all edges independently and do not 
consider the concept of permutations. 

In other words, we translate the original problem (estimating r ), which 
involves independent Bernoulli random variables X1,…,Xm, into an  esti-
mation problem involving independent exponential random variables  
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Y1,…,Ym. Specifically, imagine that we have a time-dependent system in 
which at time 0 all edges have failed and are under repair, and let  
Y1,…,Ym, with Yi ∼ Exp(ui

–1) and ui = 1/λ(i) = – 1/ln qi, be the independent 
repair times of the edges. Note that, by definition  
 [ ] 1/1 e 1, ,iu

i iY q i−≥ = = = …P .m  
Now, for each Y = (Y1,…,Ym), let S(Y) be the (random) time at which  the 
system “comes up” (the terminal nodes become connected). Then, we can 
write 
 ( )S 1r .⎡ ⎤= ≥⎣ ⎦YP  

Hence, we have written the estimation of r in the standard rare event for-
mulation of equation (17) and we can thus apply the CE method from [8], 
as described above. Note that γ = 1 in this situation. 

Instead of sampling independently for each i from Exp(–1/ui), we  sam-
ple from  Exp(–1/vi). The vector v = (v1,…,vm) is thus our reference pa-
rameter. We now construct a sequence of pairs {(vt,γt)} such that vt con-
verges to a reference vector close to the  optimal CE reference parameter 
and γt  eventually  reaches one.  Starting with v0 = u = (u1,…,um), at each 
iteration t we draw a  random sample Y(1),…,Y(N) from the pdf f(⋅;vt-1}) of  
Y and update the level parameter γt using equation (18) and the reference 
parameter vt using equation (19), which  in this case has the analytical so-
lution 
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where W is the likelihood ratio 
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After iteration T, when γT reaches one, we estimate r using IS as 

 �
( )( ){ } ( )( )

1

1 S 1 W ; ,
N

Ti i
i

r I
N =

= ≥∑ Y Y u .v  

Example 5 (Bridge Network, CMC with CE) 

Consider now the bridge network in Fig. 3. Suppose the “nominal” pa-
rameter vector is u = (0.3, 0.1, 0.8, 0.1, 0.2), that is  q = (3.57e-2, 4.54e-5, 
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2.87e-1, 4.54e-5, 6.74e-3). A result of simulations is given in Table 2. The 
following CE parameters were used:  (initial) sample size N=2000 and rar-
ity parameter ρ=0.01 in equation (18). In both CMC and CMC-CE, a final 
sample size of one million was used to estimate r . 

Table 2. Results for CMC and CMC-CE 

Scheme �r  lre  
CMC-CE 6.991e-05 1.67e-02   
CMC 6.100e-05 1.28e-01   
True r  7.079e-05  

 
By using the CE method we have achieved, with minimal effort, a 98% 

reduction in variance compared to the CMC method. The CMC-CE algo-
rithm required two iterations only to converge, as illustrated in Table 3. 
Notice that the algorithm tilted the parameters of the mincut elements 
{1,3,5} to higher values, which means they will fail much more often in 
the simulations. One can interpret this as the algorithm placing more im-
portance on the mincut elements than on the remaining edges. 

Table 3. Convergence of the parameters 

t tγ  tv  
0 – 0.3 0.1 0.8 0.1 0.2 
1 0.507 0.964833 0.216927 1.20908 0.0892952 0.567551 
2 1.000 1.19792 0.120166 1.57409 0.0630103 1.15137 

4.4 CP and CE (CP-CE) 

We now apply the CE method to the CP simulation using reference pa-
rameters determined by the CE method rather than the nominal parameters. 
There are many ways to define a distribution on the space of permutations. 
However, note that the original distribution of Π is determined by the ex-
ponential distribution of Y. In fact, Π can be viewed as a function of Y. To 
see this, we generate Y1,…,Ym independently according to Yi ∼ Exp(ui

–1) 
and order the Yi's such that 

1 2 m
Y Y YΠ Π Π≤ ≤ ≤" . Then we take Π(Y) = 

(Π1,…,Πm) as our random permutation. 
We can express the network failure probability by 
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( )( ) ( )S ,Cr g⎡ ⎤ ⎡ ⎤= Π = ⎣ ⎦⎣ ⎦u uY YE E  (21) 

where we redefine S(Y) as gC(Π(Y)), with gC being the  Markov process 
function for the permutation defined in equation (6). A natural way of de-
fining a change of measure is to choose different parameters vi (instead of 
the nominal ui) for the exponential distributions of the edge lifetimes, in a 
similar way to Section 4.3. Thus v = (v1,…,vm) is still the vector of mean 
“repair” times. However, we have a slightly different situation from Sec-
tion 4.3, because instead of  having to estimate a rare event probability 
P[S(Y) ≥ 1] we now have to  estimate the (small) expectation E[S(Y)]. We 

can no longer use a two-phase procedure (updating γ and v), but instead 
use the one-phase procedure in which we only update vt.  The analytic so-
lution to program (16) for the i-th component of vt is 

( )( ) ( )( ) ( )

( )( ) ( )( )
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11

S W ; ,
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S W ; ,
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t i N
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v
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−=

=
∑

∑
Y Y u v

Y Y u v
k i

 (22) 

where Y(k)i is the i-th component of Y(k). To improve convergence in ran-
dom sampling situations, it is often beneficial to use a smoothing parame-
ter α to blend the old with the new estimates. That is we take 
 ( ) 11t tα α t−′ = + −v v v  
as the new parameter vector for the next iteration. 

4.5 MP and CE (MP-CE) 

The situation can be further generalized by employing CE for MP simula-
tion. Recall that for each permutation π in the CP, there is a corresponding 
trajectory θ in the MP. Let Θ: π 6 θ be the mapping that assigns to each 
permutation π the corresponding unique trajectory θ. Then equation (21) 
can be rewritten as 

 ( )( )( ) ( )S ,Mr g⎡ ⎤ ⎡ ⎤= Θ Π = ⎣ ⎦⎣ ⎦u uY YE E  

where S(Y) has been redefined as gM(Θ(Π(Y))), with gM being the Markov 
process function for the trajectory θ defined in  equation (9). The same CE 
procedure (22) described in Section 4.4 can be applied to the MP as well. 
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Example 6 (Bridge Network, MP and CP with CE) 

We return to the bridge network of Example 5.  Table 4 lists the results for 
the standard MP and CP simulations, compared with their counterparts 
with IS in which the reference parameters are determined by the CE 
method. The nominal reference parameter remains unchanged. That is, u = 
(0.3, 0.1, 0.8, 0.1, 0.2), and we use  the CE parameters α = 0.7 and N = 
2000. The final sample sizes are N = 105 in all the original and CE simula-
tions. 

Table 4. Results for CP-CE and MP-CE 

Scheme �r  lre  
MP-CE 7.082e-05 1.16e-03 
MP 7.081e-05 1.32e-03 
CP-CE 7.079e-05 1.21e-03 
CP 7.079e-05 1.32e-03 
CMC-CE 6.991e-05 1.67e-02 
True r  7.079e-05  

 
We have repeated this experiment numerous times and have consistently 
found that the Merge Process and the CP have very close performance in 
such a small example network. We also found that the CE technique pro-
vides an improvement (reduction) in variance of roughly 20% in both 
cases. 

Note that the CMC simulation with CE still has over 100 times the vari-
ance of that in MP, MP-CE, CP or CP-CE simulations. This shows that no 
matter how much one modifies the CMC scheme with smart sampling 
techniques, the scheme still cannot compare to the simple CP sampling. In 
other words, it is the “structure” of sampling in the CP that makes it supe-
rior. 

With the MP-CE or CP-CE sampling, there is no parameter γ to indicate 
when to stop the CE parameter tuning, therefore we need to use other 
strategies. Since we have imprecise knowledge of the performance func-
tion, we have to resort to simulation to evaluate that function at each point 
in order to optimize program (16). On the other hand, we do not want to 
spend too long on the CE parameter estimation effort, compared to the real 
simulation.  As a result, we cannot use classic convergence criteria such as 
“stop when two consecutive vectors are ε close in some norm”. Fortu-
nately, permutation (and trajectory) sampling depends on the relative 
weight of each edge and hence the sampling is fairly insensitive to the pre-
cise values of the Importance Sampling parameter vt. Therefore we only 
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require a vector that is in the “right” region. As a rule of thumb, we rec-
ommend 5% to 10% of the final estimation effort to be spent on the CE pa-
rameter estimation. 

Table 5 displays the evolution of the reference parameters for the MP-
CE, where we stopped the CE algorithm after only three iterations, when 
the estimates “stabilized” (the values stop fluctuating). Again the algo-
rithm allocated more attention to the mincut elements {1,3,5} and treated 
the rest as less important. 

Table 5. Evolution of the reference parameters 

t tv  
0 0.3 0.1 0.8 0.1 0.2 
1 0.35768 0.07378 0.86343 0.06899 0.2548 
2 0.37752 0.06507 0.86312 0.05950 0.2718 
3 0.38688 0.05956 0.85218 0.05764 0.2785 

4.6 Numerical Experiments 

In this section we give a few larger examples that might be found in com-
munication networks. Fig. 6 shows a 3×3 and a 6×6 grid network, each 
network has four terminals at the corners. All links have the same failure 
probability. All experiments use a final sample size of 106 and the CE tun-
ing batch sample size of 5000. In the tables, T denotes the CE tuning itera-
tion and α denotes the smoothing parameter. The CMC-CE had a rarity pa-
rameter ρ=0.02. The estimated relative error ( lre ), sample variance (mvar ), 
simulation time (t) as well as Relative Time Variance (RTV) are also pro-
vided for comparisons. The RTV is defined as the product of the simula-
tion time t (in seconds) and the estimated sample variancemvar . It can be 
used as a metric to compare different algorithms. For a large number of 
samples N, the simulation time is proportional to N and the sample vari-
ance is inversely proportional to N. Therefore the RTV is a number that 
largely depends on the network and the performance of the algorithm un-
der investigation rather than on N. The smaller the RTV value, the more 
efficient is the simulation algorithm. 
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Fig. 6. A 3×3 and a 6×6 grid network 

For verification purposes, the exact network failure probabilities are evalu-
ated and listed as well. Note that in these trivial examples, alternative ap-
proaches such as approximation [3, 14] can also be used to obtain fairly 
accurate results. 

Example 7 (3×3 unreliable grid) 

In this example, all links of the 3×3 grid network have the same failure 
probability q = 10–3. A result of the simulation is given in Table 6. 

Table 6. Simulation results for the 3×3 unreliable grid network 

Scheme T α �r  lre  mvar  t RTV 
MP-CE 10 0.1 4.012e-06 1.07e-03 1.85e-17 18 3.34e-16 
MP - - 4.012e-06 1.12e-03 2.03e-17 17 3.39e-16 
CP-CE 10 0.1 4.011e-06 3.42e-03 1.88e-16 10 1.96e-15 
CP - - 4.016e-06 3.89e-03 2.45e-16 9 2.24e-15 
CMC-CE 4 1 2.830e-06 1.51e-01 1.81e-13 9 1.66e-12 
CMC - - 4.000e-06 5.00e-01 4.00e-12 8 3.14e-11 
True value   4.012e-06     
 
The CMC method gives a poor variance and relative error as expected. The 
CMC-CE shows a 95% reduction in variance but the variance is still too 
high to make this scheme very useful. In fact, the CMC-CE scheme has not 
converged in this example (also indicated by a relatively high lre ). The CP 
method gives a much smaller variance (0.1% of CMC-CE) while the CE 
method achieved a further reduction of 20-25% on average. The MP 
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method has an even smaller variance (10% of CP) and the CE method pro-
vides roughly a 10% further reduction. Taking into account the computa-
tion overhead introduced by the CE method (approximately 10%), the MP-
CE has a slight overall speed advantage over the MP algorithm, making 
the MP-CE the most efficient method to use. 

Example 8 (6×6 reliable grid) 

This is a larger network example consisting of 36 nodes and 60 edges with 
equal link failure probability q=10–6. A result of the simulation is given in 
Table 7. 

Table 7. Simulation results for the 6×6 reliable grid network 

Scheme T α �r  lre  mvar  t RTV 
MP-CE 10 0.1 3.999e-12 1.53e-03 3.76e-29 122 4.60e-27 
MP – – 3.998e-12 1.75e-03 4.89e-29 113 5.55e-27 
CP-CE 10 0.1 4.005e-12 1.28e-02 2.61e-27 66 1.72e-25 
CP – – 4.006e-12 2.10e-02 7.07e-27 56 3.99e-25 
CMC-CE 5 1 8.625e-14 9.08e-01 6.13e-27 41 2.51e-25 
CMC – – 0 undefined 0 34 – 
True value   4.000e-12     
 
The CMC and CMC-CE methods cannot handle such a low probability 
with a million samples. The CP provides good estimates and yet the CE 
method reduces the sample variances further by about 65% in the CP-CE. 
The MP starts with a much lower (1%) sample variance than that of CP 
and the CE further reduces it by 25% in the MP-CE. The RTV of the MP-
CE and the CP-CE show a 20% and 130% speed up over the MP and the 
CP, respectively. 

Example 9 (20-node 30-link unreliable network) 

The next example is a 20-node 30-link network shown Fig. 7 with equal 
link failure probability of 3%. Two terminal reliability (the two terminal 
nodes are marked by thick circles in the figure) is to be estimated using 
different simulation schemes. A result of the simulation is given in Ta-
ble 8. Note that in this example, the simple Minimum Cut Approximation 
method described in [6] will estimate a network failure probability of 
5.4×10–5, a 12% deviation from the true value of 6.138×10–5. 
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Fig. 7. A 20-node 30-link network 

Table 8. Simulation results for the 20-node 30-link network 

Scheme T α �r  lre  mvar  t RTV 
MP-CE 10 0.1 6.128e-5 3.15e-3 3.72e-14 54 2.00e-12 
MP – – 6.111e-5 3.99e-3 5.94e-14 50 2.94e-12 
CP-CE 10 0.1 6.124e-5 1.13e-2 4.80e-13 26 1.24e-11 
CP – – 6.192e-5 2.32e-2 2.06e-12 22 4.55e-11 
CMC-CE 7 0.5 6.091e-5 6.46e-2 1.55e-11 18 2.80e-10 
CMC – – 6.500e-5 1.24e-1 6.50e-11 16 1.04e-09 
True value   6.138e-5     
 
The CMC method performed poorly as reflected in high variance and rela-
tive error. The CMC-CE method has significant improvement over CMC 
but is still far from ideal. Both CP and MP provide good estimates and the 
CE method improves them much further. In terms of RTV, the MP-CE and 
CP-CE have around 50% and 270% speed up over the MP and CP respec-
tively. 

4.7 Summary of results 

With a better “sampling structure” and smart conditioning, the MP and CP 
schemes are superior to the CMC scheme. The CE technique further im-
proves the performance of the MP and the CP schemes; the degree of im-
provement becomes more prominent as the network size grows. Close in-
spection of the IS parameter vT reveals that the bottleneck-cut edges have 
been allocated higher importance than the rest. 
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Another point to note is the smoothing parameter α. If we keep α = 0.7 
as in the bridge example, the IS parameters v might oscillate instead of 
converge to the optimal v* and as a consequence give poor estimates. We 
found that in larger networks, a smaller smoothing parameter such as α = 
0.1 is much more robust and always gave good results in our experiments.  
Numerical experience suggests that an increase in the tuning sample size N 
can alleviate the need to reduce the smoothing parameter α in larger prob-
lems. Of course, this means more effort has to be spent estimating each 
Importance Sampling parameter vt. However, if we leave α very small, 
more iterations are required for convergence towards v*. This raises the 
question of the most efficient way to allocate effort in estimating v*. 

5 Network Design and Planning 

This section is concerned with a network planning problem where the ob-
jective is to maximize the network's reliability subject to a fixed budget.  
More precisely, given a fixed amount of money and starting with a non-
existent network, the question is which network links should be purchased, 
in order to maximize the reliability of the finished network. Each link car-
ries a pre-specified price and reliability. This Network Planning Problem 
(NPP) is difficult to solve, not only because it is a constrained integer pro-
gramming problem, which complexity grows exponentially in the number 
of links, but also because for large networks the value of the objective 
function – that is, the network reliability – becomes  difficult or impracti-
cal to evaluate. 

5.1 Problem Description 

As before, consider a network represented as an undirected graph G(V,E),  
with set V of nodes (vertices), and set E of links (edges).  The number of 
links is |E| = m. Without loss of generality we may label the links 1,…,m. 
Let K ⊆ V be the set of terminal nodes. With each of the links is associated 
a cost ce and reliability pe. The objective is to buy those links that optimize 
the reliability of the network – defined as the probability that the terminal 
nodes are connected by functioning links – subject to a total budget Cmax. 
Let c = (c1,…,cm) denote vector of link costs, and p = (p1,…,pm)  the vector 
of link reliabilities. 
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We introduce the following notation. For each link e let ye be such that 
ye = 1 if link e is purchased, and 0 otherwise. We call the vector y = 
(y1,…,ym) the purchase vector and y* the optimal  purchase vector. Simi-
larly, to identify the operational links, we define for each link e the link 
state by xe = 1 if link e is bought and is functioning, and 0 otherwise. The 
vector x = (x1,…,xm) is thus the state vector. For each purchase vector y let 
ϕy be the structure function of the purchased system. Thus, ϕy assigns to 
each state vector x the state of the system (working = terminal nodes are 
connected = 1, or failed = 0). Let Xe be random state of link e, and let X be 
the corresponding random state vector. Note that for each link e that is not 
bought, the state Xe is per definition equal to 0.   The reliability of the net-
work determined by y is (see Equation (2)) given by 

( ) ( ) ( ) [ ].r ϕ ϕ⎡ ⎤= =⎣ ⎦ =∑y y
x

y X x XE  xP

c C

 (23) 

We assume from now on that the links fail independently, that is, X is a 
vector of independent Bernoulli random variables, with success probability 
pe for each purchased link e and 0 otherwise. Defining py = (y1p1,…,ympm), 
we write X ∼ Ber(py). Our main purpose is to determine 

( ) maxmax , subject to .e e
e

r y
∈

≤∑y
y

E

 (24) 

Let r* ≡ r(y*) denote the optimal reliability of the network. 

5.2 The CE Method for Combinatorial Optimization 

The CE method is not only useful for rare-event estimation problems, but 
can also be applied to solve difficult discrete and continuous optimization 
problems. In this context, the method involves the following main steps, 
which are iterated: 

1. Generate random states in the search space according to some 
specified random mechanism. 

2. Update the parameters of this mechanism in order to obtain better 
scoring states in the next iteration. This last step involves minimiz-
ing the CE distance between two distributions. 

We now specify these two steps for the NPP. 

Random Network Generation 

A simple method to generate the random purchase vectors is describe be-
low: Let a = (a1,…,am) be the probability vector where ae is the probability 
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of purchasing edge e. Further let Y(k) be the k-th random purchase vector 
where Y(k),e=1 denotes edge e is purchased or else 0. Following is a simple 
algorithm to generate K random purchase vectors by rejecting the invalid 
(cost exceed maximum) ones. 

 

Algorithm 1 (Generation Algorithm) 

1. Generate a uniform random permutation π = (e1,…,em). Set k = 1. 
2. Calculate  

1

1
.

k i

k
e ei

C c Y c−

=
= + ∑ ie

3. If C ≤ Cmax, draw ( )keY ∼ Ber
kea . Otherwise set 0

keY = . 

4. If k = m, then stop; otherwise set k = k + 1 and reiterate from step 2. 
 

Remark 2 

We note that, when drawing via Algorithm 1, the purchase vectors have 
some correlation bias.  Theoretically, in order to generate random net-
works without such bias, one should sample from the conditional Bernoulli 
distribution (see [5]). However this is significantly more involved than the 
present algorithm/heuristic, and from our experience does not yield much 
gain.  

Updating Generation Parameters 

The usual CE procedure [28] proceeds by constructing a sequence of refer-
ence vectors {at, t ≥ 0} (i.e., purchase probability vectors), such that {at,   t 
≥ 0} converges to the degenerate (i.e., binary) probability vector a*=y*. 
The sequence of reference vectors is obtained via a two-step procedure, 
involving an auxiliary sequence of reliability levels {γt, t ≥ 0} that tend to 
the optimal reliability γ* = r* at the same time as the  at tend to a*. At each 
iteration t, for a given at-1, γt is the sample (1–ρ)-quantile of performances 
(reliabilities). Typically ρ is chosen between 0.01 and 0.1. That is, generate 
a random sample Y(1),…,Y(K) using the generation algorithm above; com-
pute the performances r(Y(i)), I = 1,…,K and let ( )( 1t )K

r
ρ

γ
−⎡ ⎤⎢ ⎥

= , where r(1) ≤ 

… ≤ r(K) are the order statistics of the performances. The reference vector 
is updated via CE minimization, which (see [28]) reduces to the following:  
For a given fixed at-1 and γt, let the j-th component of at  be 
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where we use the same random sample Y(1),…,Y(k) and  where Y(i)j is the 
j-th coordinate of Y(i). 

The main CE algorithm for optimizing Equation (24) using the above 
generation algorithm is thus summarized as follows. 

Algorithm 2 (Main CE Algorithm for Optimization) 

1. Initialize .  Set t = 1 (iteration counter). 0a
2. Generate a random sample Y(1),…,Y(K)  using Algorithm Error! Ref-

erence source not found., with 1t−=a a . Compute the sample (1–ρ)-

sample of performances tγ . 
3. Use the same sample to update , using Equation (ta 25). 

4. If ( )( )max min ,1t t β− ≤a a for some small fixed β then stop (let T 

be the final iteration); otherwise set t = t + 1 and reiterate from step 2. 

Noisy Optimization 

As mentioned earlier, for networks involving a large number of links the 
exact evaluation of the network reliability is in general not feasible, and 
simulation becomes a viable option.  

In order to adapt Algorithm 2 to noisy NPPs, we again, at iteration t, 
generate a random sample Y(1),…,Y(N) according the ( )1t−aBer  distribu-
tion. However, the corresponding performances (network reliabilities) are 
now not computed exactly, but estimated by means of Monte Carlo simu-
lations such as Equation (10). During the optimization process, one might 
need to estimate the reliability of a large number of networks using a  lim-
ited number of samples. An efficient estimation algorithm is the MP de-
scribed in previous section. It works well with relatively small sample size 
even for highly reliable networks. 

5.3 Numerical Experiment 

To illustrate the effectiveness of the proposed CE approach, consider the 
6-node fully-connected graph with 3 terminal nodes given in Figure 8. The 
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links costs and reliabilities are given in Table 9. Note that the direct links 
between the terminal nodes have infinite costs. We have deliberately ex-
cluded such links to make the problem more difficult to solve. The total 
budget is set to Cmax = 3000. 

Note that for a typical purchase vector y the network reliability r(y) will 
be high, since all links are quite reliable. Consequently, to obtain an accu-
rate estimate of the network reliability, or better, the network unreliability 

( ) ( )1r r= −y y , via conventional Monte Carlo methods, would require a 
large simulation effort. The optimal purchase vector for this problem –
computed by brute force – is y* = (1,1,0,0,1,0,1,1,0,1,0,0,0,0,1), which 
yields a minimum network  unreliability of *r  = 7.9762 × 10–5. 
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Fig. 8. Network with 3 terminal nodes, denoted by black vertices. 

Table 9. Link costs and reliabilities 

i ci pi i ci pi i ci pi

1 382 0.990 6 380 0.998 11 397 0.990 
2 392 0.991 7 390 0.997 12 380 0.991 
3 ∞ 0.992 8 395 0.996 13 ∞ 0.993 
4 ∞ 0.993 9 396 0.995 14 399 0.992 
5 320 0.994 10 381 0.999 15 392 0.994 

 
We used the following parameters for our algorithm: the sample size in 
Step 2 of the CE algorithm K = 300; the sample size in Equation (10) N = 
100; the initial purchase probability  = (0.5,…,0.5). The algorithm stops 
when all elements of are less than β = 0.01 away from either 0 or 1.  Let 
T denote the final iteration counter. We round to the nearest binary vec-
tor and take this as our solution a* to the problem. 

0a

ta
ˆTa
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Table 10 displays a typical evolution of the CE method. Here, t denotes 
the iteration counter, tγ the sample (1–ρ)-quantile of the  estimated unreli-
abilities, and the purchase probability vector,  at  iteration t.  The impor-
tant thing to notice is that quickly converges to the optimal degenerate 
vector a* = y*. The simulation time was 154 seconds on a 3.0GHz com-
puter using a Matlab implementation. 

ta

ta

In repeated experiments, the proposed CE algorithm performed effec-
tively and reliably in solving the noisy NPP, which constantly obtained the 
optimal purchase vector. Moreover, the algorithm only required on average 
9 iterations with a CPU time of 180 seconds. 

Table 10. A typical evolution of the purchase vector 

t tγ  ta  
0  0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
1 4.0e-03 0.66 0.69 0.15 0.15 0.62 0.48 0.59 0.64 0.38 0.62 0.52 0.38 0.15 0.41 0.62 
2 2.6e-04 0.69 0.63 0.05 0.05 0.72 0.21 0.88 0.71 0.33 0.75 0.58 0.26 0.05 0.38 0.77 
3 1.4e-04 0.67 0.75 0.01 0.01 0.78 0.11 0.89 0.89 0.12 0.76 0.57 0.22 0.01 0.44 0.77 
4 1.0e-04 0.76 0.76 0.00 0.00 0.89 0.03 0.97 0.90 0.06 0.83 0.43 0.11 0.00 0.41 0.84 
5 8.1e-05 0.79 0.88 0.00 0.00 0.97 0.01 0.99 0.97 0.02 0.90 0.15 0.03 0.00 0.33 0.95 
6 6.7e-05 0.94 0.96 0.00 0.00 0.97 0.00 1.00 0.99 0.01 0.97 0.07 0.01 0.00 0.10 0.99 
7 6.3e-05 0.98 0.99 0.00 0.00 0.99 0.00 1.00 1.00 0.00 0.99 0.02 0.00 0.00 0.03 1.00 
8 5.8e-05 0.99 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 0.01 0.00 0.00 0.01 1.00 

6 Network Recovery and Expansion 

This section looks at the optimal network design problem in an incre-
mental sense, that is, one starts with a baseline network and has to decide 
which additional links should be bought, in order to optimally improve the 
reliability of the network. This situation occurs for example in military 
networks, where as a result of components failures or attacks, part of the 
network has become isolated and must be reconnected. Another example is 
when new nodes are being deployed, and one has to choose between many 
available options to connect them to the existing network. 

6.1 Problem Description 

Consider an existing network (may be non-functional) as a base network. 
Additional links are bought to improve the network reliability. In situations 
where multiple possible configurations are available, the goal is to find the 
configuration those results in highest network reliability. Let EB denotes B
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the edge set of the base network and Ei denotes the additional links in the 
i-th network GI = G(V,EBB∪Ei,K). Here we assume the node set and termi-
nals are the same among all the networks. If ri denotes the reliability of the 
network Gi, then the goal is to find the network Go among all possible con-
figurations such that 
 { }max .o ii

r r=  

In some situations where the connection points are limited – for exam-
ple satellite terminals may be available to only a few nodes – the choices 
of alternate bearer (link) locations may not be extensive. In that case, the 
simplest approach is to use exhaustive search. Thus, the process can be di-
vided into two steps: 

1. generate all the valid configurations (or candidate networks Gi); and 
2. compare their reliabilities and find the optimal network Go. 
Figure 9 shows an example network being separated into two groups. In 

order to rejoin the two groups, at least one link is needed and there are 12 
possible ways to connect the node sets {A1, A2, A3} and  {B1, B2, B3, 
B4}. It is easy enough to generate all the 12 candidate networks and com-
pare their reliability to find the optimal location of the alternate bearer. 

 

 
Fig. 9. Example with small number of candidates 

 
If the existing network is large and/or multiple links are being added, 

the number of possible candidate networks grows very quickly. Often the 
computational cost of enumerating all networks and comparing their reli-
ability becomes prohibitive. Another approach is to use simulation-based 
combinatorial optimization techniques under multiple constraints. The 
constraints of the optimization program can be as simple as fixing the 
maximum number of additional links, or specifying some maximum limit 
on the total cost of adding the links.  
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6.2 Reliability Ranking 

As for large networks the exact calculation of network reliability is diffi-
cult, estimating it via Monte Carlo simulation becomes favourable. Note 
that in applications like network reliability optimization, one needs to 
compare the reliability of multiple similar networks. When simulation is 
used to estimate network reliability, sampling error (noise) is introduced. If 
the two networks are similar, the noise can become so significant that it 
may impair the accuracy of the comparisons. Hui et al. proposed a coupled 
approach to estimate reliability difference of two similar networks with 
high confidence [17]. In this section we demonstrate how a similar concept 
can be used and specialized to compare many similar networks very effec-
tively. The concept is somewhat similar to using common random numbers 
to reduce variance in Monte Carlo simulation. 

Edge Relocated Networks 

The concept of Edge Relocated Networks [17] refers to networks having 
the same number of edges with matched link reliabilities1. The differences 
between the networks are thus restricted to a few links being reconnected 
to different nodes. In other words, if Gi and Gj are edge relocated networks, 
they share the same edge reliability vector p. Figure 10 shows two edge re-
located networks derived from the same base network.  

 
Fig. 10. Example of Edge Relocated Networks 

Coupled Sampling 

Since the edge relocated networks share the same edge reliability vector p, 
it is proven [17] that their reliability can be compared very efficiently.  The 
idea is to sample the edge states and observe them in different edge relo-
cated networks. When dealing with many edge-relocated networks simul-

                                                      
1   Note that if there are unmatched links between the networks, redundant self-

loops can be introduced to bring the networks to edge relocated versions of 
each other (see [17]). 
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taneously, one sampling scheme is of particular interest, namely edge per-
mutation sampling. 

Edge permutation sampling starts from the Construction Process in Sec-
tion 3.1. In particular, we imagine the network is constructed dynamically 
by repairing links independently and with an exponential repair time.  At 
time t = 0 each edge e is failed and is being repaired at a repair rate λ(e) = 
– ln(qe).  The network unreliability is equal to the probability of the dy-
namic network not being operational at time t = 1, and is of the form (see 
Equation (7)) ( )gr ⎡= Π⎣E ⎤⎦ , where g is a know function involving con-

volutions and  Π is a permutation describing the random order in which the 
links come up. By sampling from Π, r can be efficiently estimated via 
Equation (8). 

This edge permutation sampling (or simply permutation sampling) 
scheme is superior to other combinatorial sampling schemes because it 
elegantly avoids the rare event problem. In highly reliable networks such 
as communication networks, the networks are functioning most of the 
time, and hence it is hard for the combinatorial schemes to sample the fail-
ure state and estimate its probability.  As a consequence, it is more difficult 
to compare the reliability of similar networks. In permutation sampling, 
however, the networks always start at the same failure state and will even-
tually come up. The only question is when will they come up or what is 
their operational probability at time t=1. 

When comparing reliability of networks, the Coupled CP proposed in 
[17] is very efficient in finding the reliability difference of two networks. It 
can achieve 1011 times speedup over the best known independent sampling 
scheme. The scheme uses the simple observation of the following equation  

 
 [ ] ( ) ( )( ) ( ) ( ), .i j i j i j i jr r r g g g g

π

π π π ⎡ ⎤= − = Π = − = Π − Π⎣ ⎦∑P E  

 
The method takes samples of permutations and observes how the two net-
works behave under the same edge permutation. Figure 11 shows an ex-
ample edge construction sequence on two edge-relocated networks. As-
suming the black nodes are the terminals, network GA will come up (i.e. all 
terminal nodes become connected) on the 5-th edge while network GB will 
be on the 6-th edge. Hence their probability functions g

B

A(π) and gBB(π) will 
be different.  
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Fig. 11. Example of Coupled CP 

If we take N random permutations {Π(1),…,Π(N)} and observe them on both 
networks, their reliability difference can be estimated by 

 m ( ) ( )( ) ( )
,

1
.

N
A i B i

A B
i

g g
r

N=

Π − Π
= ∑  

Synchronous Construction Ranking (SCR) 

In our reliability optimization problem, the prime interest is searching for 
the most reliable network among the candidates. Therefore the actual dif-
ference in reliability is not our main concern. All we need to find is which 
network is more reliable than others.  

In the edge permutation sampling scheme, the most reliable network is 
expected to come up earlier than others. Therefore one can sample edge 
permutations and observe how all the candidate networks evolve simulta-
neously. The most reliable network should come up first most often. 

Let bi(π) denotes the critical number of graph Gi on permutation π, that 
is the ordinal number when the network comes up. For example in Fig-
ure 11, bA(π) = 5 and bB(π) = 6. Let b*(π) be the smallest critical number 
among the candidate networks on a given permutation π, that is 

B

 ( ) ( )b* min bii
.π π=  

Then Go is the most reliable network if and only if it has the highest chance 
of coming up before any other candidates. Mathematically, it is the net-
work that corresponds to the solution of the program 
 ( ) ( )max b b* .ii

⎡ ⎤Π = Π⎣ ⎦P  

This is how the SCR scheme works: First randomly sample N permutations 
and then estimate the probability of network Gi being the best by 

 ( )
( ) ( ){ }( ) ( )

1

b b*
.

N i j j
o i

j

I
P

N=

Π = Π
= ∑G  

Finally, find the network with the maximal Po and take it as the optimal Go. 
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Example 10 

Figure 12 shows an example of a surviving network that consists of 18 
nodes and 28 links. {C1,…,C5} are the core routers and  {A0,…,A12} are 
the access routers. A0 is currently isolated and needs to be re-connected to 
the network. Assuming there are enough resources to provide two wireless 
links connecting any nodes, the question is where the extra links should be 
attached in order to achieve maximal all-terminal reliability.  Table 11 lists 
the reliabilities of different types of link in the example. 

A10
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C2

C3

C5

C4

A0

A1

A2

A3

A4
A5

A6

A7

A8

A9

A11

A12 Core Routers  
Fig. 12. Example isolated network 

 

Table 11. Link reliabilities 

Link Reliability 
Core–Core 0.9999 
Access–Core 0.999 
Access–Access 0.999 
Wireless links 0.99 

 
Since there are 18 nodes, there are 18C2 = 153 ways to form a link. Hence 
there are 153C2=11628 ways to add 2 different links. In order to reconnect 
A0 to the network, at least one of the links must attach to A0. Therefore, 
those configurations for which both links are not attached to A0 can be 
ruled out, and this leaves 153C2 – 136C2 = 2448 valid configurations to 
choose from. 

We applied the SCR scheme to the 2448 candidate networks using 
100,000 samples, it took 341 seconds on a 2.8GHz Pentium 4 machine to 
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find the optimal network as shown in Fig. 13. The optimal network has a 
failure probability of 1.2485×10–4. Intuitively, one might place the two 
links connecting A0 to its nearest core routers C3 and C4 as shown in 
Fig. 14. However, the intuitive network has a failure probability of 
1.1069×10–3, almost nine times that of the optimal network. It shows that 
spending a little time on searching for the optimal configuration can have 
significant benefits. 
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Fig. 13. Optimal network with two added links 
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Fig. 14. Intuitive way to add two links 

6.3 CE Method 

Direct reliability comparison using the SCR scheme is effective when the 
number of candidates is small, however, it not practical to compare large 
number of networks even with the efficient SCR scheme. For example, 
there are 585,276 candidate networks if we want to add three links to the 
network in Figure 12. It quickly grows to nearly 22 million candidates if 
four links are to be added. Obviously we need a different approach to the 
problem and the CE-method is a good one. 

Random Network Generation 

The first step in the CE method is to generate random network according 
to some random mechanism. One such mechanism involves drawing with-
out replacement. Imagine that each additional link is present in a lucky 
draw barrel from which we draw a fixed number of links to build our net-
work. Initially, each link has an equal weight/probability of being picked. 
As the CE method progresses, the selection probabilities of the links are 
being modified until each one is close to either 0 or 1. 

Let w = (w1,…,wm) denote the weight vector, with we ∈ [0,1] being the 
weight of edge e. If B represents the set of edges still in the barrel, then the 
probability of edge i being picked is  

 .i

e
e B

w
w

∈
∑
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The edges are drawn without replacement until the required number of 
edges is reached. The weights are updated at the end of each iteration of 
the CE method.  Each weight we is increased if edge e is more likely to be 
involved in the high scoring networks or decreased otherwise. At the end 
of the CE optimization, we will be close to either 1 (part of the optimal net-
work) or 0 (not part of the optimal network). 

Updating Generation Parameters 

The second part of the CE-method concerns updating the random network 
generation parameters we. It involves taking the best performing (e.g. 5%) 
random networks generated and finding which links are more likely being 
involved. 

To find the elite portion of the candidate networks, one can extend the 
SCR scheme to search the top ρ portion instead of just the best network. 
For each permutation π, order the K candidate networks in ascending criti-
cal number.  Then find the ⎡ρ×K⎤-th number and call it the elite critical 
number bρ(π). With N random permutations, we can estimate the probabil-
ity of network Gi in the elite ρ portion by 

 ( )
( ) ( ){ }( ) ( )
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b b
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N i j j
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ρ
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= ∑G  

The elite network set Gρ consists of the ⎡ρ×K⎤ networks that have the high-
est Pρ(Gi). Once we have the elite network set, we can update each edge 
weight by finding the probability of the edge being used in the elite net-
works, that is, 
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It is often beneficial to “smooth” the parameter update by incorporating 
part of the past history, especially when dealing with a noisy optimization 
problem. Let wt be the weight vector used in the t-th iteration of the CE-
method. A smoothing parameter α ∈ [0,1] is used to update the weight for  
the next iteration: 
 1 (1 ) .t t tα α+ ′= + −w w w  
Putting the sample generation and updating together, the CE-method algo-
rithm can be summarized as follows: 
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Algorithm 3 (Simple CE Algorithm) 

1. Initialization. Set all edge weight to equal value w0,e = 0.5. 
2. Generation. Generate K (e.g. 1000) random networks by drawing ma 

additional edges from the candidate edges without replacement. 
3. Elite Networks. Rank the random networks using the SCR scheme to 

find the best ρ portion (e.g. 5%) for edge weight update. 
4. Updating. Update the edge weight by 

{ }
1, , (1 ) .

i

i
t e t e

I e
w w

ρ
ρ

α α+
∈

∈
= + − ∑

G G

G

G
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5. Termination. Repeat from Step 2 until every element in wt lies in the 
ranges [0,0.01] or [0.99,1], say. The ma edges with we ∈ [0.99,1] are 
the optimal edges to be added. 

Example 11 

In this example, three links are to be added to the base network in Fig. 12 
and the result is shown in Fig. 15. 
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Fig. 15. Optimal network with three added links 

In each iteration, K = 1000 random networks are generated and ρ = 5% or 
50 elite networks are used to update the edge weights. The smoothing pa-
rameter of α = 0.5 is used and 5000 random permutations are used to find 
the elite network set. It took 19 iterations and 142 seconds on a 2.8GHz 
Pentium 4 machine to find the optimal configuration. Fig. 16 shows how 
the edge weights evolve over the iterations. It shows how the weights of 
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the prospective links grow while the others decay toward zero. Eventually, 
the weights become “degenerate”, so that the edge weights of the optimal 
edge set stay at 1 while the  remaining  ones stay at 0. 
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Fig. 16. Evolution of edge weights 

This program was also used to find the optimal configuration for the two 
added links case.  The same configuration as in Fig. 13 was found in 15 it-
erations using 105 seconds on the same machine using the same CE pa-
rameters.  It demonstrates that the CE-method is an efficient and effective 
approach to finding the optimal configuration. 

6.4 Hybrid Optimization Method 

Algorithm  3 described above is tailored to finding a single optimal solu-
tion. If there is more than one solution, the algorithm has trouble deciding 
which one is better and as a consequence the weights “oscillate” and this 
keeps the algorithm from converging. Another situation where this occurs 
is when there are networks with performances that are very close to the op-
timal one. 
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Consider for instance in the previous examples the case where only one 
link is to be added to reconnect the network. There are 17 ways to recon-
nect node A0 to the rest of the network and each resultant network has ex-
actly the same reliability. In this multiple optima situation, the Simple CE 
algorithm above will not converge.  

Multi-optima Termination 

One way to avoid the non-converging situation in the Simple CE algorithm 
is to terminate the algorithm once oscillating behavior is detected. In the 
case where the candidate networks have the same reliability and are per-
fectly matched, the SCP ranking scheme can detect the non-converging 
situation effectively, unlike independent sampling schemes, which will 
have real trouble telling whether two networks have the same reliability. If 
each of the N (e.g. 5000) samples indicates that every network comes up at 
exactly the same point, it is quite certain that all the K networks indeed 
have the same reliability. In that case the CE-method can stop and take the 
distinct networks as multiple optimal solutions. 

Take the single additional link example described above using K = 1000 
networks in each iteration and take N = 5000 samples to estimate the rank-
ing. After 18 iterations that took 97 seconds, all the networks appeared to 
have the same reliability and the program finished. Among the 1000 gen-
erated networks, only 17 distinct networks exist and they are the 17 possi-
ble optimal solutions. 

Mode Switching 

In the situation where only one single optimal solution exists but there are 
other networks with reliabilities very close to the optimal, the Multi-
optima Termination method may not work. One may try to terminate a 
prolonged simulation by detecting edge weight fluctuations, but unfortu-
nately sometimes edge weight fluctuation before converging is part of the 
normal process. Therefore it is not easy to decide how long one should 
wait before the simulation is deemed to be non-converging. Even if it can 
be detected, it still does not help in searching for the optimal solution. 

A more practical approach is to stop the CE iterations once the number 
of prospective links drops below a certain threshold, and then generate all 
the candidate networks using the prospective links and search for the opti-
mal network using the SCR scheme. Since the edge weights will be polar-
ized (close to either 0 or 1) in the CE-method, prospective links are simply 
those that have higher than the mean weight. Effectively, the CE-method is 
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used as a filter removing those edges that are unlikely to be part of the op-
timal network.  

To demonstrate how the scheme works, we repeat the two additional 
link examples with a much smaller sample size. Instead of 5000 samples, 
100 were used to rank the 1000 generated networks. With such small num-
ber of samples, the confidence of the ranks is much reduced or, in other 
words, there is much more noise in the elite estimates. There is a high 
chance that the confidence intervals of top few candidate networks overlap 
each other. Therefore the algorithm is more likely to oscillate or even pick 
a sub-optimal solution if let to run indefinitely. However, we set the pro-
gram to switch to SCR scheme when the number of candidate links drop 
below 15. Then 100,000 samples are used to search for the optimal con-
figuration.  The algorithm took eight iterations to filter out 140 of the 153 
possible links and overall took 17 seconds to decide the optimal configura-
tion is to add (A0, A11) and (A0, A7) links as shown in  Fig. 13. Compare 
to 341 seconds required by the SCR algorithm alone, this hybrid scheme is 
much more robust and efficient. We applied the same scheme to the three 
additional link example with the switch-over point set to 10 links or below. 
The simulation took 21 seconds to find the same optimal solution depicted 
in Fig. 15. 

To summarize, the Hybrid procedure is as follows: 

Algorithm 4 (Hybrid CE Algorithm) 

1. Initialization. Set all edge weight to an equal value w0,e = 0.5. 
2. Generation. Generate K (e.g. 1000) random networks by drawing ma 

additional edges from the candidate edges without replacement. 
3. Elite Networks. Rank the random networks using the SCR scheme to 

find the best ρ portion (e.g. 5%) for edge weight update. 
4. Multi-optima Condition. Check if all generated networks have iden-

tical reliability. If yes, output distinct networks and terminate proce-
dure. 

5. Mode Switching. If the number of prospective links drops to or below 
a threshold mp, generate all candidate network using the prospective 
links and use SCR to search for the optimal network. Output the opti-
mal network and terminate the procedure. 

6. Updating. Update the edge weight using Equation (26). 
7. Termination. Repeat from Step 2 until every element in wt lies in the 

ranges [0,0.01] or [0.99,1]. The ma edges with we in the [0.99,1] range 
are the optimal edge set to be added. 
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6.5 Comparison Between the Methods 

To compare the different schemes, the examples of 1, 2 and 3 additional 
links are re-run with more comparable parameters. For the SCR scheme, 
500,000 samples are used to compare different networks. In the CE-
methods, each iteration uses 10,000 samples to compare 1000 generated 
networks. The elite portion is set to 5% and a smoothing factor of 0.5 is 
used as well. With the Hybrid CE algorithm, the CE parameters are the 
same as for the Simple CE except a sample size of 1000 is used.  The 
maximum prospective link is set so that the prospective network count is 
no more than 100.  Once the threshold is reached, the prospective networks 
are generated for a final comparison using SCR with 500,000 samples. The 
average run-time in seconds are tabulated in Table 12.  

Table 12. Comparison of different schemes 

 1-Link 2-Link 3-Link 
SCR scheme 16s 1572s n/a 
Simple CE non-converging 234s 288s 
Hybrid CE 18s 56s 53s 

 
In the 1-Link case, which has 17 multiple optimal solutions, the Simple CE 
algorithm does not converge and will run indefinitely if allowed. The SCR 
scheme quickly determined that the 17 candidate networks have the same 
reliability. Note that in this case the SCR scheme is a semi-automatic proc-
ess. It requires manual filtering of the candidate networks that will not re-
connect the node A0. If all possible candidates were used in the compari-
son, it would take 102 seconds. With the Hybrid CE algorithm, it took only 
2 seconds to filter out the 136 candidates and another 16 seconds to find 
out that the remaining 17 networks have the same reliability. It is a fully 
automatic process without the need of manual filtering. 

In the 2-Link case, there are 2448 networks to compare for the SCR 
scheme and it takes a fairly long time (over 25 minutes) to finish. On the 
other hand, the Simple CE algorithm converges to the optimal solution in 
less than 4 minutes. The Hybrid CE algorithm is able to cut the computa-
tion time by 75% to less than 1 minute. This is achieved by switching 
about half-way during the iterations and uses the SCR scheme to compare 
a small number of prospective candidates.  

In the 3-Link case, the SCR method was not performed because it would 
have taken too long. Since the number of valid network grows exponen-
tially with the added links, the 3-Link example is projected to take over 30 
hours to compute using the SCR scheme. The Simple CE and the Hybrid 
CE algorithms behave similar to the 2-Link case. It is interesting to note 



Applications of the Cross-Entropy Method in Reliability      47 

that the Hybrid CE algorithm is faster in the 3-Link case than the 2-Link 
case. This is due to quantization of combinations: the three highest 2-Link 
combinations under 100 are {91, 78, 55} while that of the 3-Link case are 
{84, 56, 35}. In fact at the point of switch over, the 2-Link case has an av-
erage of 67 networks to compare while the 3-Link case has 48. 
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