Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 209))

Abstract

This article is a sequel to an article titled “A New Direction in AI – Toward a Computational Theory of Perceptions”, which appeared in the Spring 2001 issue of AI Magazine (volume 22, No. 1, 73–84). The concept of precisiated natural language (PNL) was briefly introduced in that article, and PNL was employed as a basis for computation with perceptions. In what follows, the conceptual structure of PNL is described in greater detail, and PNL’s role in knowledge representation, deduction, and concept definition is outlined and illustrated by examples. What should be understood is that PNL is in its initial stages of development and that the exposition that follows is an outline of the basic ideas that underlie PNL rather than a definitive theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. K. Allan. Natural Language Semantics. Blackwell Publishers, 2001.

    Google Scholar 

  2. J. Barwise and R. Cooper. Generalized Quantifiers and Natural Language. Linguistics and Philosophy, 4(1):159–209, 1981.

    Article  MATH  Google Scholar 

  3. A. W. Biermann and B. W. Ballard. Toward Natural Language Computation. American Journal of Computational Linguistics, 6(2):71–86, 1980.

    Google Scholar 

  4. O. Corcho, M. Fernandez-Lopez, and A. Gomez-Perez. Methodologies, Tools and Languages for Building Ontologies. Where is their Meeting Point? Data and Knowledge Engineering, 46(1):41–64, 2003.

    Article  Google Scholar 

  5. M. J. Cresswell. Logic and Languages. Methuen, London, 1973.

    Google Scholar 

  6. E. Davis. Representations of Common-sense Knowledge. Morgan Kaufmann, San Francisco, 1990.

    Google Scholar 

  7. D. Dubois and H. Prade. Approximate and Commonsense Reasoning: From Theory to Practice. In Proceedings of the Foundations of Intelligent Systems, pages 19–33, Berlin, 1996. Springer.

    Google Scholar 

  8. C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, Cambridge, Mass., 1998.

    MATH  Google Scholar 

  9. N. E. Fuchs and U. Schwertel. Reasoning in Attempto Controlled English. In Lecture Notes in Computer Science, pages 174–188, Berlin, 2003. Workshop on Principles and Practice of Semantic Web Reasoning (PPSWR 2003), Springer.

    Google Scholar 

  10. T. F. Gamat. Language, Logic and Linguistics. University of Chicago Press, Chicago, 1996.

    Google Scholar 

  11. G. Gerla. Fuzzy Metalogic for Crisp Logics. In V. Novak and I. Perfilieva, editors, Discovering the World with Fuzzy Logic: Studies in Fuzziness and Soft Computing, pages 175–187. Physica-Verlag, Heidelberg, 2000.

    Google Scholar 

  12. P. Hajek. Metamathematics of Fuzzy Logic: Trends in Logic, volume 4. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.

    Google Scholar 

  13. P. Hajek. Many. In V. Novak and I. Perfilieva, editors, Discovering the World with Fuzzy Logic: Studies in Fuzziness and Soft Computing, pages 302–304. Physica-Verlag, Heidelberg, 2000.

    Google Scholar 

  14. A. Kaufmann and M. M. Gupta. Introduction to Fuzzy Arithmetic: Theory and Applications. Van Nostrand, New York, 1985.

    MATH  Google Scholar 

  15. E. Klein. A Semantics for Positive and Comparative Adjectives. Linguistics and Philosophy, 4(1):1–45, 1980.

    Article  Google Scholar 

  16. P. Klement, R. Mesiar, and E. Pap. Triangular Norms – Basic Properties and Representation Theorems. In V. Novak and I. Perfilieva, editors, Discovering the World with Fuzzy Logic: Studies in Fuzziness and Soft Computing, pages 63–80. Physica-Verlag, Heidelberg, 2000.

    Google Scholar 

  17. G. J. Klir. Uncertainty-Based Information: A Critical Review. In V. Novak and I. Perfilieva, editors, Discovering the World with Fuzzy Logic: Studies in Fuzziness and Soft Computing, pages 29–50. Physica-Verlag, Heidelberg, 2000.

    Google Scholar 

  18. W. G. Lehnert. The Process of Question Answering – A Computer Simulation of Cognition. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1978.

    MATH  Google Scholar 

  19. D. B. Lenat. CYC: A large-scale investment in knowledge infrastructure. Communications of the ACM, 38(11):32–38, 1995.

    Google Scholar 

  20. H. Liu and P. Singh. Commonsense Reasoning in and over Natural Language. In Proceedings of the Eighth International Conference on Knowledge-Based Intelligent Information and Engineering Systems, Brighton, U. K., 2004. KES Secretariat, Knowledge Transfer Partnership Centre.

    Google Scholar 

  21. B. Macias and S. G. Pulman. A Method for Controlling the Production of Specifications in Natural Language. The Computing Journal, 38(4):310– 318, 1995.

    Google Scholar 

  22. I. Mani and M. T. Maybury, editors. Advances in Automatic Text Summarization. MIT Press, Cambridge, Mass., 1999.

    Google Scholar 

  23. D. A. McAllester and R. Givan. Natural Language Syntax and First-Order Inference. Artificial Intelligence, 56(1):1–20, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. McCarthy. Formalizing Common Sense. Ablex Publishers, Norwood, New Jersey, 1990.

    Google Scholar 

  25. R. Mesiar and H. Thiele. On T-Quantifiers and S-Quantifiers. In V. Novak and I. Perfilieva, editors, Discovering the World with Fuzzy Logic: Studies in Fuzziness and Soft Computing, pages 310–318. Physica-Verlag, Heidelberg, 2000.

    Google Scholar 

  26. V. Novak. Fuzzy Logic, Fuzzy Sets, and Natural Languages. International Journal of General Systems, 20(1):83–97, 1991.

    MATH  Google Scholar 

  27. B. Partee. Montague Grammar. Academic Press, New York, 1976.

    Google Scholar 

  28. W. Pedrycz and F. Gomide. Introduction to Fuzzy Sets. MIT Press, Cambridge, Mass., 1998.

    MATH  Google Scholar 

  29. P. Peterson. On the Logic of Few, Many and Most. Journal of Formal Logic, 20(1–2):155–179, 1979.

    Article  MATH  Google Scholar 

  30. G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, New Jersey, 1976.

    MATH  Google Scholar 

  31. B. Smith and C. Welty. What Is Ontology? Ontology: Towards a New Synthesis. In Proceedings of the Second International Conference on Formal Ontology in Information Systems, New York, 2002. ACM.

    Google Scholar 

  32. M. K. Smith, C. Welty, and D. McGuinness. OWL Web ontology language guide. W3C working draft 31. In M. K. Smith, C. Welty, and D. McGuinness, editors, W3C Working Draft. World Wide Web Consortium (W3C), Cambridge, Mass., 2003.

    Google Scholar 

  33. J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading, Mass., 1984.

    MATH  Google Scholar 

  34. J. F. Sowa. Principles of Semantic Networks: Explorations in the Representation of Knowledge. Morgan Kaufmann, San Francisco, 1991.

    MATH  Google Scholar 

  35. J. F. Sowa. Ontological Categories. In L. Albertazzi, editor, Shapes of Forms: From Gestalt Psychology and Phenomenology to Ontology and Mathematics, pages 307–340. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.

    Google Scholar 

  36. J. Sukkarieh. Mind your Language! Controlled Language for Inference Purposes. Oral presentation, May 2003. Paper presented at the Joint Conference of the Eighth International Workshop of the European Association for Machine Translation and the Fourth Controlled Language Applications Workshop, Dublin, Ireland.

    Google Scholar 

  37. R. Sun. Integrating Rules and Connectionism for Robust Commonsense Reasoning. John Wiley, New York, 1994.

    MATH  Google Scholar 

  38. R. R. Yager. Deductive Approximate Reasoning Systems. IEEE Transactions on Knowledge and Data Engineering, 3(4):399–414, 1991.

    Article  MathSciNet  Google Scholar 

  39. L. A. Zadeh. Probability Measures of Fuzzy Events. Journal of Mathematical Analysis and Applications, 23:421–427, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  40. L. A. Zadeh. A Computational Approach to Fuzzy Quantifiers in Natural Languages. Computers and Mathematics, 9:149–184, 1983.

    MATH  MathSciNet  Google Scholar 

  41. L. A. Zadeh. Syllogistic Reasoning in Fuzzy Logic and its Application to Reasoning with Dispositions. In Proceedings International Symposium on Multiple-Valued Logic, pages 148–153, Los Alamitos, Calif., 1984. IEEE.

    Google Scholar 

  42. L. A. Zadeh. Outline of a Computational Approach to Meaning and Knowledge Representation Based on the Concept of a Generalized Assignment Statement. In M. Thoma and A. Wyner, editors, Proceedings of the International Seminar on Artificial Intelligence and Man-Machine Systems, pages 198–211, Heidelberg, 1986. Springer.

    Chapter  Google Scholar 

  43. L. A. Zadeh. Toward a Theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems, 90(2):111–127, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  44. L. A. Zadeh. From Computing with Numbers to Computing with Words – From Manipulation of Measurements to Manipulation of Perceptions. IEEE Transactions on Circuits and Systems, 45(1):105–119, 1999.

    MathSciNet  Google Scholar 

  45. L. A. Zadeh. Toward a Logic of Perceptions Based on Fuzzy Logic. In V. Novak and I. Perfilieva, editors, Discovering the World with Fuzzy Logic: Studies in Fuzziness and Soft Computing, pages 4–25. Physica-Verlag, Heidelberg, 2000.

    Google Scholar 

  46. L. A. Zadeh. Toward a Perception-Based Theory of Probabilistic Reasoning with Imprecise Probabilities. Journal of Statistical Planning and Inference, 105(1):233–26, 2002.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Zadeh, L.A. (2007). Precisiated Natural Language. In: Aspects of Automatic Text Analysis. Studies in Fuzziness and Soft Computing, vol 209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37522-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37522-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37520-3

  • Online ISBN: 978-3-540-37522-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics