Skip to main content

Compositionality in Quantitative Semantics. A Theoretical Perspective on Text Mining

  • Chapter
Aspects of Automatic Text Analysis

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 209))

  • 875 Accesses

Abstract

This chapter introduces a variant of the principle of compositionality in quantitative text semantics as an alternative to the bag-of-features approach. The variant includes effects of context-sensitive interpretation as well as processes of meaning constitution and change in the sense of usage-based semantics. Its starting point is a combination of semantic space modeling and text structure analysis. The principle is implemented by means of a hierarchical constraint satisfaction process which utilizes the notion of hierarchical text structure superimposed by graph-inducing coherence relations. The major contribution of the chapter is a conceptualization and formalization of the principle of compositionality in terms of semantic spaces which tackles some well known deficits of existing approaches. In particular this relates to the missing linguistic interpretability of statistical meaning representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Bandemer and W. Näther. Fuzzy Data Analysis. Kluwer, Dordrecht, 1992.

    MATH  Google Scholar 

  2. J. Barwise and J. Perry. Situations and Attitudes. MIT Press, Cambridge, 1983.

    Google Scholar 

  3. J. Barwise and J. Seligman. Information Flow. The Logic of Distributed Systems. University Press, Cambridge, 1997.

    MATH  Google Scholar 

  4. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshmann. Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science, 41(6):391–407, 1990.

    Article  Google Scholar 

  5. D. Dubois, H. Fargier, and H. Prade. Propagation and Satisfaction of Flexible Constraints. In R. R. Yager and L. A. Zadeh, editors, Fuzzy Sets, Neural Networks, and Soft Computing, pages 166–186. van Nostrand Reinhold, New York, 1994.

    Google Scholar 

  6. P. Foltz, W. Kintsch, and T. Landauer. The Measurement of Textual Coherence with Latent Semantic Analysis. Discourse Processes, 25(2&3):285–307, 1998.

    Article  Google Scholar 

  7. P. W. Foltz. Latent Semantic Analysis for Text-Based Research. Behavior Research Methods, Instruments & Computers, 28(2):197–202, 1996.

    Google Scholar 

  8. A. J. Greimas. Strukturale Semantik. Methodologische Untersuchungen. Viehweg, Braunschweig, 1971.

    Google Scholar 

  9. M. A. K. Halliday and R. Hasan. Cohesion in English. Longman, London, 1976.

    Google Scholar 

  10. T. M. V. Janssen. Compositionality (with an Appendix by Barbara H. Partee). In J. van Benthem and A. ter Meulen, editors, Handbook of Logic and Language, pages 417–473. Elsevier, Amsterdam, 1997.

    Google Scholar 

  11. H. Kamp and B. Partee. Prototype Theory and Compositionality. Cognition, 57(2):129–191, 1995.

    Article  Google Scholar 

  12. W. Kintsch. Comprehension. A Paradigm for Cognition. Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  13. W. Kintsch. Predication. Cognitive Science, 25:173–202, 2001.

    Article  Google Scholar 

  14. G. J. Klir and T. A. Folger. Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Englewood, 1988.

    MATH  Google Scholar 

  15. A. Knott and T. Sanders. The Classification of Coherence Relations and their Linguistic Markers: An Exploration of Two Languages. Journal of Pragmatics, 30:135–175, 1998.

    Article  Google Scholar 

  16. R. Lahav. Against Compositionality: The Case of Adjectives. Philosophical Studies, 57(3):261–279, 1989.

    Article  Google Scholar 

  17. T. K. Landauer and S. T. Dumais. A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. Psychological Review, 104(2):211–240, 1997.

    Article  Google Scholar 

  18. W. C. Mann and S. A. Thompson. Rhetorical Structure Theory: Toward a Functional Theory of Text Organization. Text, 8:243–281, 1988.

    Google Scholar 

  19. D. Marcu. The Theory and Practice of Discourse Parsing and Summarization. MIT Press, Cambridge, Massachusetts, 2000.

    MATH  Google Scholar 

  20. A. Mehler. Textbedeutung. Zur prozeduralen Analyse und Repräsentation struktureller Ähnlichkeiten von Texten. Peter Lang, Frankfurt a. M., 2001.

    Google Scholar 

  21. A. Mehler. Hierarchical Orderings of Textual Units. In Proceedings of the 19th International Conference on Computational Linguistics, COLING' 02, Taipei, pages 646–652, San Francisco, 2002. Morgan Kaufmann.

    Google Scholar 

  22. A. Mehler. Zur textlinguistischen Fundierung der Text-und Korpuskonversion. Sprache und Datenverarbeitung, 1:29–53, 2005.

    Google Scholar 

  23. G. A. Miller and W. G. Charles. Contextual Correlates of Semantic Similarity. Language and Cognitive Processes, 6(1):1–28, 1991.

    Google Scholar 

  24. D. N. Osherson and E. E. Smith. On the Adequacy of Prototype Theory as a Theory of Concepts. Cognition, 9(1):35–58, 1981.

    Article  Google Scholar 

  25. B. H. Partee. Compositionality. In F. Landman and F. Veltman, editors, Varieties of Formal Semantics. Proceedings of the fourth Amsterdam Colloquium, September 1982, pages 281–311, Dordrecht, 1984. Foris.

    Google Scholar 

  26. L. Perlovsky. Neural Networks, Fuzzy Models and Dynamic Logic. In this volume.

    Google Scholar 

  27. R. Power, D. Scott, and N. Bouayad-Agha. Document Structure. Computational Linguistics, 29(2):211–260, 2003.

    Article  Google Scholar 

  28. A. Renear, E. Mylonas, and D. Durand. Refining our Notion of What Text Really Is: The Problem of Overlapping Hierarchies. In N. Ide and S. Hockey, editors, Research in Humanities Computing, pages 263–280. Oxford University Press, Oxford, 1996.

    Google Scholar 

  29. B. B. Rieger. Feasible Fuzzy Semantics. In K. Heggstad, editor, COLING-78 7th International Conference on Computational Linguistics, pages 41–43. ICCL, Bergen, 1978.

    Google Scholar 

  30. B. B. Rieger. Fuzzy Word Meaning Analysis and Representation in Linguistic Semantics. In Proceedings of the 8th International Conference on Computational Linguistics (COLING '80), Tokyo, pages 76–84, 1980.

    Google Scholar 

  31. B. B. Rieger. Feasible Fuzzy Semantics. On Some Problems of How to Handle Word Meaning Empirically. In H. Eikmeyer and H. Rieser, editors, Words, Worlds, and Contexts. New Approaches in Word Semantics (Research in Text Theory 6), pages 193–209. de Gruyter, Berlin/New York, 1981.

    Google Scholar 

  32. B. B. Rieger. Semantic Relevance and Aspect Dependency in a Given Subject Domain. In D. E.Walker, editor, COLING '84 - Proceedings 10th International Conference on Computational Linguistics, pages 298–301, Stanford, 1984. ACL.

    Chapter  Google Scholar 

  33. B. B. Rieger. Unscharfe Semantik: Die empirische Analyse, quantitative Beschreibung, formale Repräsentation und prozedurale Modellierung vager Wortbedeutungen in Texten. Peter Lang, Frankfurt a. M., 1989.

    Google Scholar 

  34. B. B. Rieger. Situation Semantics and Computational Linguistics: Towards Informational Ecology. In K. Kornwachs and K. Jacoby, editors, Information. New Questions to a Multidisciplinary Concept, pages 285–315. Akademie-Verlag, Berlin, 1995.

    Google Scholar 

  35. B. B. Rieger. Computing Granular Word Meanings. A Fuzzy Linguistic Approach in Computational Semiotics. In P. Wang, editor, Computing with Words, pages 147–208. Wiley, New York, 2001.

    Google Scholar 

  36. G. Ruge. Wortbedeutung und Termassoziation. Methoden zur automatischen semantischen Klassifikation. Olms, Hildesheim, 1995.

    Google Scholar 

  37. G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading, Massachusetts, 1989.

    Google Scholar 

  38. H. Schütze. Automatic Word Sense Discrimination. Computational Linguistics, 24(1):97–123, 1998.

    Google Scholar 

  39. A. J. C. Sharkey and N. E. Sharkey. Weak Contextual Constraints in Text and Word Priming. Journal of Memory and Language, 31(4):543–572, 1992.

    Article  Google Scholar 

  40. P. Thagard. Coherence in Thought and Action. MIT Press, Cambridge, 2000.

    Google Scholar 

  41. L. A. Zadeh. Toward a Theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems, 90:111–127, 1997.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Mehler, A. (2007). Compositionality in Quantitative Semantics. A Theoretical Perspective on Text Mining. In: Aspects of Automatic Text Analysis. Studies in Fuzziness and Soft Computing, vol 209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37522-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37522-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37520-3

  • Online ISBN: 978-3-540-37522-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics