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Abstract. It’s a long time since video post production became digital, yet the 
issue of collaborative video authoring has not been seriously investigated so far. 
In this paper we tackle this problem from a transactional point of view, that al-
lows us to ensure consistent exchange and sharing of information between au-
thors by taking into account application semantics. Our main contribution is the 
development of a new data model called concurrent video, especially intended 
for cooperative authoring environments. We demonstrate that the presented 
model provides efficient means of organizing and manipulating video data, at 
the same time enabling direct use of merging mechanisms, which constitute a 
formal basis for collaborative scenarios. Moreover, since the proposed approach 
is mainly media-independent, we argue that the results of our work are applica-
ble to other types of stream data as well. 

1   Introduction 

Today, computers are widely used to support the work of individuals. However, peo-
ple tend to work in teams, whose members may be distributed over different loca-
tions. In addition, cooperation is inevitable in large-scale development and joint ef-
forts help to meet tight deadlines in shorter projects. Thus, computers are required to 
support team activities just as well as individual tasks. 

In case of video authoring collaboration often becomes an essential part of the 
process. This is especially true for the post production stage of movie-making when 
several people may be constantly involved in editing, adding visual effects and as-
sembling a set of clips coming from common footage. Undoubtedly, appearance of 
adequate tools for multi-user video authoring is going to encourage closer cooperation 
among editors and hence enhance the quality of work that is carried out in both enter-
taining and broadcasting industries [9]. 

Since the goal of team work on a shared resource is to increase development pro-
ductivity, cooperating users should not be disturbed with various difficulties that may 
arise from parallel actions of other participants. Therefore, ensuring consistency of 
shared data in the presence of concurrent actions becomes the key aspect in collabora-
tive applications design. Actually, the latter happens to be the classical problem of 
transaction management, except that the traditional paradigm of competition for re-
sources has to be replaced with an appropriate cooperation strategy. 
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Such technique was presented in the cooperative activity model CoAct [15], which 
provides basic transactional support for interactive multi-user environments. In 
CoAct, each user operates in its own workspace that contains private versions of 
shared objects. User’s actions are modeled via an activity history, which can be 
treated as a sequence of operations representing an individual working process. To 
achieve cooperation, co-workers can explicitly incorporate the results of their actions 
into the common workspace, which reflects the current state of collaborative effort. 
This incorporation can be viewed as semantically correct merging of private activity 
histories [20], guided by compatibility relations of constituent operations and involv-
ing the responsible user in case of a conflict. Thus, user transactions are executed 
concurrently in the context of a single cooperative transaction, enabling joint work 
and ensuring consistency of shared data. 

In this paper we utilize formal aspects of the CoAct framework, which functional-
ity corresponds to the needs of collaborative authoring environments [16, 1], in the 
field of cooperative video editing. For this purpose we develop the concurrent video 
data model, which provides an efficient tree-based abstraction for the underlying me-
dia stream and defines basic editing operations to support the authoring process. Fur-
thermore, the model enables adequate maintenance of activity histories, facilitating 
utilization of the CoAct merging algorithm in the considered applications. 

The rest of the paper is organized as follows. After giving a brief overview of re-
lated work, in section 3 we introduce the concurrent video data model. Next, in sec-
tion 4, we discuss the transactional aspect of our proposal. Finally, we present conclu-
sions and further work. 

2   Related Work 

In this section we first describe basic concepts underlying non-linear video editing 
and then briefly review previous approaches to cooperative multimedia authoring. 
Lastly, we summarize current research on video modeling. 

2.1   Video Authoring 

During the last decade video post-production techniques have moved from analog 
tape-to-tape editing to the world of digital non-linear editing systems. Computers 
brought enormous advantages to the video industry, leaving behind the drawbacks of 
work with sequential storage media. 

Though there are various approaches to digital multimedia authoring [6], in this 
paper we will refer to well-known timeline-based systems to understand the basics of 
non-linear editing. We will keep in mind the functionality offered by representative 
commercial tools such as Adobe Premiere [3] and Ulead MediaStudio Pro [17] to 
identify the most general concepts underlying the video authoring process. 

In applications we consider, the movie is created by altering and assembling source 
clips that are treated as independent units of raw material. These clips along with 
other graphical and audio objects are placed on the timeline, which naturally repre-
sents the time flow [18]. After the inclusion of necessary objects, they can be edited, 



special effects and transitions can be applied and the resulting material can be ar-
ranged into a final video production. Thus, the authors are likely to operate on clips as 
a whole, rather than on particular video frames. In any case, such editing implies just 
referencing the original files, which are not actually modified, and hence a special 
process called rendering is required to preview or export the produced movie. 

To the best of our knowledge, none of the existing commercial applications sup-
ports concurrent video authoring and the related research works are also very few. 

In [5] and [19] cooperative editing of multimedia documents based on locking 
mechanisms is proposed, while in [24] the prospects of exploiting operational trans-
formations in a replicated multimedia authoring environment are investigated. How-
ever, these approaches do not consider stream data modeling issues and do not pro-
vide consistency guarantees in a transactional sense. 

2.2  Video Modeling 

There exists a wealth of research proposals covering various aspects of video model-
ing, such as annotation, content-based access and segmentation. Taking into account 
the course of our work, we will focus on those models that consider composition of 
structured multimedia data. 

A set of basic operations for temporal and spatial composition of video segments is 
defined in video algebra [23]. These operations allow users to create multi-window 
presentations by constructing possibly nested algebraic expressions. A hierarchy of 
annotated expressions forms the algebraic video data model, providing a logical rep-
resentation to the underlying raw material and enabling content-based access. 

OVID database system [14] introduces video-objects as an abstraction over sets of 
video frames. Each object has a unique identifier and an appropriate set of descriptive 
attributes, which can be inherited by newly composed elements on the basis of the in-
terval inclusion relationship. 

AVIS system [2] presents a tree-based structure for modeling video and its con-
tents. Though this abstraction is mostly designed for annotation and query processing, 
adequate updating mechanisms are also supported. The latter makes this work in some 
respects the closest to our investigations. 

A recent proposal [8] to a certain extent summarizes previous approaches, 
constructing a framework for segmentation, annotation, querying and composition of 
video data. In this model, composition operators are embedded into the query lan-
guage and propagate the logical structure of the source videos to the resulting ones. 

However, editing operations in the above systems, as well as those in some other 
related works [7, 10], will unlikely be sufficient for multimedia authoring environ-
ments. The problem lies in the fact that most mentioned models do not provide ex-
plicit support for such essential editing actions as insertion and deletion of video seg-
ments or frame-level manipulations. 

Actually, a model called stream algebra [13] does provide a formal basis for oper-
ating on diverse kinds of streams in the context of the exploratory data analysis. It de-
fines some useful editing operations, but it does not consider the logical structure of 
the underlying media and therefore can hardly be exploited in video authoring appli-
cations without any additional abstractions. 



3   Concurrent Video Model 

In this section we first emphasize some important issues related to modeling video 
data in collaborative authoring environments and then present our solution to these 
problems – the concurrent video model. 

3.1   Basic Requirements 

Generally, the main goal of our work is to develop a data model that would be suit-
able for the needs of video authoring techniques (1) and that would enable execution 
of cooperative activities (2). 

More precisely, the first requirement implies the creation of an adequate internal 
representation of the media stream, that would capture the nature of the editing proc-
ess and would provide efficient support for manipulating underlying video. Tradition-
ally, such task assumes the development of an appropriate abstraction that merely ref-
erences raw material, being separate from it, and also contains various additional 
information, i.e. meta-data. In this way, instead of working with vast amounts of mul-
timedia structures, references to videos are manipulated, supporting efficient updating 
mechanisms and promising some other benefits [10]. 

At the same time the second requirement adds a transactional aspect to our investi-
gations. Since in the CoAct framework the compatibility property is used as a basis 
for merging activity histories and, similar to conventional concurrency control [22], a 
semantic conflict test is defined for each possible pair of operation invocations, the 
model should provide editing operations with good commutativity properties, thus 
enabling high concurrency among co-workers’ actions. 

A more serious problem here is maintaining activity histories, which play the cen-
tral role in merging facilities of CoAct. The point is that the presence of inverse op-
erations, such as insertion and deletion of video segments, may lead to fictitious con-
flicts and accumulation of large amount of redundant data in these histories, as 
demonstrated later in section 4. Mentioned issues are not addressed in CoAct and thus 
certain mechanisms should be provided to enable correct use of the existing merging 
algorithm in the discussed applications. 

Concurrent video satisfies both of the above requirements in a uniform and effi-
cient manner, presenting a single data structure for modeling underlying media and 
maintaining activity histories. According to the concepts of timeline-based authoring, 
the model proposes video segments of an arbitrary length as the basic units constitut-
ing the media stream. It provides a tree-based structure for referencing this raw mate-
rial and supports high-level operations allowing the users to insert and delete, alter 
and temporally combine video clips to form the final production. 

To enable cooperative efforts, operations on different segments are considered to 
be commutative, i.e. different users can work concurrently on different clips without 
any conflicts. Moreover, activity histories are stored within the same hierarchical 
structure that references video data, providing elegant support for merging mecha-
nisms and eliminating all problems related to the history maintenance. 

In what follows we give the definition of the concurrent video data model, while 
the transactional aspect of our work is discussed later in section 4. 



3.2   Video Segments 

We introduce the notion of a video segment to represent an abstraction over inde-
pendent units of video data, which are used as building blocks within the authoring 
process. Basically, each video segment references a contiguous part of raw material 
via a frame sequence and in addition has its own set of attribute-value pairs which de-
scribe the proper interpretation of the underlying media at the presentation and 
rendering level. Frame sequences reflect the stream-like nature of video data, while 
attributes support implementation of non-destructive editing operations. 

Following are the definitions: 

Definition 1 (frame sequence) A frame sequence is a finite non-empty sequence     
(f1 ,…, fN) of video frames fi, referring to a contiguous block of video data. N is called 
the length of a video sequence F and is denoted by Length(F). 

Definition 2 (video segment) A video segment is a pair (F, A), where F is a frame 
sequence and A is a possibly empty set of attribute-value pairs {ai:vi}, storing various 
additional information about the containing segment. 

To refer to different elements of the above entities and other objects introduced 
later we will use dot notation. For example, S.F will identify the frame sequence of a 
given video segment S. 

In general, the presented definitions are similar to those that can be found in previ-
ous research works, for example see [10], and our notion of a video segment is actu-
ally very close to the notion of a video object in [14]. However, we intentionally 
avoid timing specifications within frame sequences and do not interpret segment’s at-
tributes as mere annotations to the underlying data. 

The reason why we do not explicitly consider the temporal aspect in the definition 
of a frame sequence is the assumption of constancy of the frame rate within a particu-
lar block of raw video, to a portion of which the sequence is supposed to refer. The 
corresponding frame rate can be easily indicated aside among the attributes of the 
given video segment, for example as {FrameRate:30}, thus allowing users to change 
the play speed of the selected clips in an efficient way and without modifying the 
source material. 

In a similar manner, attributes can be used to specify the spatial resolution or the 
color mode desired in the final production. Moreover, modeling of special effects and 
transitions, which are typically applied to video clips, is also possible in this way, as it 
will be described in more detail in section 3.4. 

Below, for convenience of the subsequent discussion, we define two trivial opera-
tions on frame sequences: 

Definition 3 (concatenation) For any two given frame sequences F = (f1, …, fN) and 
G = (g1, …, gM) their concatenation is a new frame sequence (f1, …, fN, g1, …, gM), 
denoted by Concat(F, G). 

Definition 4 (extraction) For any given frame sequence F = (f1, …, fN) of length N, 
an extraction within the range [k, m], where k ≥ 1 ∧ m ≤ N ∧ k ≤ m, is a new frame se-
quence (fk, fk+1, …, fm), denoted by Extract(F, [k, m]). 

Advanced versions of these operations can be found in [8]. 



3.3   Video Activity Tree 

At this point we introduce the core part of the concurrent video data model, defining a 
hierarchical structure that arranges video segments in a single media stream and at the 
same time enables efficient maintenance of activity histories. Basically, each video 
activity tree represents an abstraction over a sequence of clips which can be edited 
and temporally combined by cooperating users to form the final production. 

The proposed tree is a properly organized collection of nodes which serve different 
purposes depending on their position within the hierarchy. Particularly, certain leaf 
nodes, called valid, are associated with video segments constituting the media stream, 
other leaves, called dead, stand for previously deleted segments and intermediate 
nodes are mainly intended for holding related parts of the activity history. Actually, 
there exists a one-to-one correspondence between valid nodes of the tree and video 
clips visible to the users, and moreover, the total order imposed on leaf nodes by the 
tree structure reflects the order in which mentioned clips appear on the timeline. Ad-
ditionally, since we are concerned with collaborative work, nodes as well as activity 
history elements are marked whether they are private or shared, indicating what part 
of the tree and the history is present in the common database and what part exists only 
in the considered local workspace. 

The following is a basic illustration of the above concepts: 

Fig. 1. A video activity tree in a local workspace. Characters v, d, i and r denote valid, dead, in-
termediate nodes and the root node of the tree correspondingly 

One of the most important aspects of our data model is the assignment of unique 
identifiers to valid nodes of the video activity tree. The point is that utilization of 
these unique values for referring to video clips allows us to develop efficient editing 
operations with state-independent commutativity relations. This is achieved due to the 
fact that the considered identifiers do not depend on the actual positions of respective 
video segments on a timeline, which are also unique, but often change as the users in-
sert new material into the media stream or remove unnecessary parts from it. 

Generally, our approach is noticeably different from previous tree-based models, 
such as those presented in [2] and [12], which are mainly devoted to annotation and 
content-based querying of video databases rather than to video composition and coop-
erative work. 
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Now, let’s move on to the formal definition of a video activity tree: 

Definition 5 (video activity tree) A video activity tree T is a tuple (Root, Nodes, 
Valid, Dead), where Root is the root node of T, Nodes is a set of intermediate nodes of 
T, and Valid and Dead are disjoint sets of so-called valid and dead nodes, which are 
all leaves of T, with and without associated video segments correspondingly. 

For any given node N ∈ {Root} ∪ Nodes ∪ Valid ∪ Dead its parent node is de-
noted by Parent(N) and a set of its child nodes is denoted by Children(N). 

Additionally, there exists a total order <t defined over a set of leaf nodes of T, that 
corresponds to the order in which associated video segments are located (or were lo-
cated for dead nodes) on the timeline, i.e.: ∀ N, M ∈ Valid ∪ Dead: N <t M ∨ M <t N. 

For the clarity of further discussion we will not dwell on the implementation of the 
leaves order and child-parent relationships, which exist in a video activity tree. How-
ever, before presenting the internal structure of particular nodes, we will introduce the 
notion of an operation instance that is crucial for understanding activity histories: 

Definition 6 (operation instance) An operation instance is a tuple (Status, OID, 
Name, Input, Output), where Status ∈ {private, shared} indicates whether this in-
stance is present only in the current workspace or not, OID is a unique identifier of 
this instance and Name is the name of the corresponding operation, whose input and 
output parameters are reflected in Input and Output sets. 

Intuitively, an operation instance can be treated as a record establishing the fact of 
execution of a certain editing operation by some user. Such records act as elementary 
entities for modeling the authoring process and building activity histories. Further-
more, they have unique identifiers for tracing identical instances during merging. 

In the concurrent video model, operation instances are stored in the nodes of a 
video activity tree along with other relevant information in the following manner: 

Definition 7 (valid node) A valid node V of a video activity tree is a tuple (NID, 
Segment, History), where NID is a unique node identifier of V, Segment is a video 
segment associated with V and History is an ordered set of operation instances related 
to the given node V. 

Definition 8 (intermediate node and dead node) An intermediate node as well as a 
dead node of a video activity tree is merely a tuple (History), where History is in-
tended for the same purpose as its counterpart in valid nodes. 

From the above definitions it should be clear that in the presented model raw video 
data is referenced only by those video segments which are contained in valid nodes of 
the video activity tree. One of the key aspects is that these segments can be addressed 
by means of the dedicated identifiers, which are unique for each valid node. Such val-
ues can be generated, for example, by combining in a single entity a unique name of 
the current user and a trivial counter of identifiers that were assigned to particular 
video clips during the overall work of that user. 

In general, all data structures defined above are managed by editing operations 
provided by the concurrent video model and partly by cooperation primitives which 
are responsible for information exchange in the collaborative environment and which 
are in fact supposed to update status of the operation instances only. 



3.4   Editing Operations 

Evidently, cooperating users involved in the authoring process are not supposed to 
know anything about the internals of the concurrent video model. The only related 
thing that they see is the timeline and the most common thing that they are likely to 
do is altering and assembling the selected video clips. 

To support such kind of work we introduce appropriate editing operations, which 
can be easily utilized for modeling user’s actions within a particular workspace. These 
operations adequately modify the video activity tree, preserving the correspondence 
between ordered valid nodes and video clips on a timeline and at the same time effi-
ciently maintaining the activity history. 

First of all, we define an initialization routine that should be used to form an initial 
state of the cooperative activity in the common database. 

Definition 9 (initialization algorithm) The initialization algorithm takes a sequence 
of N video clips, denoted by a collection of N video segments (vs1, …, vsN) as input, 
forms a corresponding video activity tree with an empty history and yields no output: 

1. Construct N valid nodes Vi: ∀ i, 1 ≤ i ≤ N: Vi := (NewID(), vsi, ∅), 
where NewID() denotes a function generating a new unique identifier. 

2. Construct a video activity tree T: T := (Root, ∅, {Vi | 1 ≤ i ≤ N}, ∅), such that: 
∀ Vi: Parent(Vi) = Root ∧ ∀ i, j: 1 ≤ i < j ≤ N ⇔ Vi <t Vj. 

The initialization algorithm is not considered as an operation that should be re-
flected in the activity history, it merely constructs an initial version of the video activ-
ity tree from the specified ordered set of video clips, which then can be manipulated 
by means of other operations to form the final production. 

Typically, throughout the editing process authors may wish to include some new 
clips into their project as well as remove existing ones. This can be achieved with the 
help of insertion and deletion operations, which allow users to insert a particular 
video fragment into the specified position on a timeline or delete a selected video clip, 
accordingly shifting the subsequent material in both cases. 

Definition 10 (insertion algorithm) The insertion algorithm takes as input a new 
video fragment, denoted by the segment vs, and its desired location on the timeline, 
specified by a destination point pos within the frame sequence of a clip with given 
identifier id. The algorithm splits the affected node of the video activity tree T, up-
dates its history and yields a set of newly created clip identifiers {Vi.NID} as output: 

1. Find a node V ∈ T.Valid: V.NID = id, report failure if such node does not exist. 
2. Construct an intermediate node V′: V′ := (V.History). 
3. If pos > 0 ∧ pos < len, where len = Length(V.Segment.F), construct valid nodes Vi: 

    V1 = (NewID(), (Extract(V.Segment.F, [1, pos]), V.Segment.A), ∅), 
    V2 = (NewID(), vs, ∅), 
    V3 = (NewID(), (Extract(V.Segment.F, [pos + 1, len]), V.Segment.A), ∅), 
Else construct only two of the above nodes having non-empty frame sequences. 

4. Adjust T: T := (Root, T.Nodes ∪ {V′}, T.Valid ∪ {Vi} \ {V}, T.Dead), such that: 
Parent(V′) = Parent(V) ∧ ∀ Vi: Parent(Vi) = V′ ∧ ∀ i, j: i < j ⇔ Vi <t Vj. 

5. Append instance (private, NewID(), Insert, {vs, id, pos}, {Vi.NID}) to V′.History. 



Since the insertion algorithm is based on the node splitting technique, the affected 
valid node is replaced with a subtree whose leaves correspond to the resulting combi-
nation of involved video clips, as illustrated in figure 2. Still, the actual behavior of 
this operation depends on whether the user inserts new material between two adjacent 
video segments or inside one of them. The former case is accomplished straightfor-
ward, while in the latter case the destination clip should be properly divided into two 
independent fragments which inherit their attributes from the common predecessor. 

Fig. 2. Node splitting carried out during the insertion: (a) – an original valid node with the as-
sociated clip, (b) – the splitted node after an insertion inside the clip, (c) – the splitted node af-
ter an insertion to the end of the clip (insertion to the beginning of the clip is analogous) 

Apparently, the discussed algorithm affects a bounded part of the video activity 
tree, operating on a single valid node and enabling commutativity of insertions exe-
cuted within different video segments. Thus, users are able to add new material to dif-
ferent parts of the media stream concurrently. 

At the same time, to delete previously inserted clips from the project authors are 
supposed to employ the next operation: 

Definition 11 (deletion algorithm) The deletion algorithm takes as input an identifier 
id of the clip that has to be removed from the media stream. It correspondingly adjusts 
the video activity tree T, updates the history and yields no output: 

1. If ∃ V ∈ T.Valid: V.NID = id, Then find P: P = Parent(V) and go to step 3. 
2. If ∃ D ∈ T.Dead, ∃ O ∈ D.History: O = (*, *, Delete, {id}, *), * denotes any value, 

Then report success, Else report failure. 
3. If ∃ O ∈ P.History: O = (private, *, Insert, {V.Segment, *, *}, *) ∧ 

   ∀ N ∈ Children(P) \ {V}: N.History = ∅, 
Then undo the effect of the insertion O and report success. 

4. Construct a dead node V′: V′ := ({O ∈ V.History | O.Status = Shared}). 
5. Adjust T: T := (Root, T.Nodes, T.Valid \ {V}, T.Dead ∪ {V′}), such that: 

Parent(V′) = Parent(V) ∧ ∀ N ∈ T.Valid ∪ T.Dead: V′ <t N ⇔ V <t N. 
6. Append an operation instance (private, NewID(), Delete, {id}, ∅) to V′.History. 

The presented deletion algorithm has several important features. First, it is de-
signed in a way to support commutativity between any two removals, even those of 
the same clips, as specified in step 2. Second, it acts as an inverse for some insertions, 
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that are not shared by other users and are not affected by subsequent operations, as 
checked in step 3. Evidently, such compensation can be performed by undoing the ef-
fect of node splitting, which may involve concatenation of the previously separated 
frame sequences, and by removing the corresponding insertion record from the his-
tory. Lastly, the discussed algorithm eliminates from the dead node those operation 
instances which are not shared and hence become irrelevant after the clip removal. 

In general, the proposed operations provide efficient means of concurrent temporal 
composition of video segments within a single media stream. However, they do not 
provide adequate support for moving video clips along the timeline, since a pair of 
appropriate deletion and insertion methods will conflict with parallel editing of the 
moved clip. That’s why we additionally develop the following algorithm: 

Definition 12 (moving algorithm) The moving algorithm takes as input an identifier 
mid of the clip that has to be moved and its new location specified by pos and id pa-
rameters, which are similar to their counterparts in the insertion algorithm. The identi-
fier of the moved clip is kept intact, the activity history is updated accordingly and a 
set of newly created node identifiers {Vi.NID | Vi.NID ≠ mid} is returned as output: 

1. Find a node M ∈ T.Valid: M.NID = mid, fail if such node does not exist. 
2. Find a node S ∈ T.Valid: S.NID = id, report failure if such node does not exist. 
3. Apply steps 4 and 5 of the deletion algorithm to the node M to form a dead node D. 
4. Apply steps 2 - 4 of the insertion algorithm to the nodes S (splitted) and M (moved) 

in such a way that: ∃ i: Vi ∈ Children(S) ∧ Vi = (mid, M.Segment, ∅). 
5. Append an instance (private, NewID(), Move, {mid, id, pos}, {Vi.NID}) to the his-

tories D.History and S.History. 

In contrast with previous algorithms the one presented above alters two valid nodes 
of the video activity tree simultaneously and adds the same operation instance to the 
histories in both of them. But essentially, it is just a slightly modified sequence of de-
letion and insertion, which turns out to be commutative with the next operation: 

Definition 13 (editing algorithm) The editing algorithm takes as input an identifier 
id of the clip that has to be modified and a new video segment vs which represents the 
results of the modification. The algorithm simply replaces an old video segment with 
the new one, updating the history and yielding no output: 

1. Find a node V ∈ T.Valid: V.NID = id, report failure if such node does not exist. 
2. Modify V: V := (V.NID, vs, {O ∈ V.History | O.Status = Shared}). 
3. Append an operation instance (private, NewID(), Edit, {id, vs}, ∅) to V.History. 

Obviously, this algorithm is a rough approximation to the actual modifications, 
such as image-level manipulations, which can occur within a video clip. Nevertheless, 
we leave the development of intra-segment editing operations to further research, em-
phasizing that even the presented methods ensure a high level of concurrency. 

Moreover, due to existence of the last algorithm we can model transitions and spe-
cial effects by means of certain attribute-value pairs, which may, for example, de-
scribe a sequence of filters applied to the corresponding video clip or indicate a type 
of transition to the next clip. The values of these attributes may be changed at any 
time without modifying the source material and after all they can be exploited during 
the rendering stage for constructing the desired video production. 



4   Collaborative Authoring 

In this section we present a general description of how cooperation can be achieved in 
a multi-user video authoring environment by means of the concurrent video data 
model. This part of our investigations is entirely based on the CoAct transactional 
concepts, which can be found in [11, 20] and for brevity are not stated here. 

At first, we provide an efficient method of extracting correct subhistories from a 
set of operation instances scattered over the video activity tree, thus enabling selection 
of consistent units of work that can be subject of information exchange. After that, we 
look in more detail at the history merging mechanism, pointing out some related prob-
lems and examining how they are solved in the concurrent video model. 

4.1   Consistent Units of Work 

In the CoAct framework two distinct types of commutativity, forward and backward, 
are exploited for manipulating activity histories [11, 21]. 

Forward commutativity was already mentioned in section 3.4 and will be thor-
oughly discussed a bit later, as exactly this kind of relation is used for detecting con-
flicts between operations coming from different histories during merging. 

Backward commutativity serves another purpose and is discussed below, as it is in-
tended for determining dependencies between user’s actions within a single history. 
The point is that the behavior of editing actions is typically influenced by some of the 
previously executed operations, for example, any modifications of a particular video 
clip may depend on the preceding insertion of this clip into the media stream. Hence, 
no operation instance can be exchanged between workspaces without its relevant 
predecessors. And it is backward commutativity that allows us to identify so-called 
closed subhistories [11] which have no external dependencies and thus represent con-
sistent units of work. Evidently, such subhistories can be exchanged between cooper-
ating users separately from each other. 

Turning back to the concurrent video data model, we aim at the development of a 
technique for constructing closed subhistories out of a given video activity tree. This 
implies selecting required operation instances from the nodes of the tree and defining 
a proper total execution order over these instances. The latter brings an additional 
complication to our discussion since in contrast to the CoAct framework we do not 
maintain activity histories as totally ordered sets of constituting elements and thus, the 
sequential nature of the histories should be somehow recovered at the stage of infor-
mation exchange to enable cooperation. 

We start with the definition of the following partial order, which naturally extends 
nodes child-parent relationships present in a video activity tree to operation instances: 

Definition 14 (hierarchical order) For any two operation instances A and B, con-
tained in a video activity tree T, we consider that A <H B iff: 

∃ N ∈ T.Nodes ∪ T.Valid ∪ T.Dead: A precedes B in the ordered set N.History ∨ 
∃ P: P = Parent(N), A is the last element in P.History and B ∈ N.History. 

Actually, this partial order reflects all relevant dependencies which exist between 
non-commuting operations in a particular activity tree. In fact, it corresponds to the 



restricted (comparing to [11]) backward commutativity relation, which ensures that 
the execution order of any two successive commuting operations from the given his-
tory can be exchanged without affecting the state of a video tree. This means that the 
last definition specifies a basis for extracting those operation instances from an activ-
ity tree which belong to the same closed subhistory. 

Moreover, determination of an appropriate total execution order within the selected 
subhistory becomes straightforward according to the following lemma, which pro-
vides a way of constructing equivalent legal histories [11] out of a given video tree: 

Lemma 1 Any two total orders <U and <V that are defined over a set of operation in-
stances H which are contained in the nodes of a given video activity tree T, such that 
<H ⊂ <U ∧ <H ⊂ <V, form two legal histories (H, <U) and (H, <V). The video activity 
trees resulting from applying these histories to the respective initial workspace state 
are identical. 

Owing to the lack of space, we will omit the proof of the above statements as well 
as the proofs of some subsequent facts, paying more attention to the final results. 

Briefly summarizing the previous discussion we want to emphasize that the selec-
tion of a closed subhistory from a video activity tree and its total ordering can be suc-
cessfully implemented by means of the hierarchical order alone. And since this partial 
order is naturally reflected by our tree-based data model, we can easily provide an 
elegant and efficient algorithm that can be used for extracting consistent units of work 
from a given workspace: 

Definition 15 (subhistory extraction algorithm) The subhistory extraction algo-
rithm denoted by Subhistory takes an operation instance O contained in a video activ-
ity tree T as input and yields as output an ordered list of operation instances from T 
representing a minimal closed subhistory [11] under {O}: 

1. If O = null ∨ O is marked as already included in the subhistory Then return ∅. 
2. Find a node N ∈ T.Nodes ∪ T.Dead ∪ T.Valid: O ∈ N.History. 
3. If O.Name = Move Then find a node M ≠ N: O ∈ M.History and go to step 6. 
4. If ∃ A ∈ N.History ∪ Parent(N).History: A <H O ∧ ∀ B <H O: B <H A 

Then Nprev := A Else Nprev := null. 
5. Mark O as already included in the subhistory and return Subhistory(Nprev) • O. 
6. Find Nprev and Mprev for nodes N and M like it is done in step 4. 
7. Mark O as already included and return Subhistory(Nprev) • Subhistory(Mprev) • O. 

Evidently, the extraction algorithm can be successfully used for constructing a 
minimal closed subhistory under a set of operation instances {O1, …, ON}, with the 
help of mere lists concatenation (and under the assumption that inclusion markers are 
not reset between the function calls): 

List := Subhistory(O1) • … • Subhistory(ON) 

Additionally, since any operation instance depends, possibly transitively, on all in-
stances from the parents of its own node, we can supply a set of leaf nodes to the 
slightly modified version of the extraction algorithm for constructing the complete ac-
tivity history of a given workspace. With such histories further exploitation of various 
aspects of the CoAct framework becomes possible. 



4.2   Merging Activity Histories 

In general, merging of activity histories in CoAct [20] is a semi-automatic process, 
which requires external control only in case of a conflict between users’ actions. In 
what follows, we concentrate on utilization of the CoAct conflict detection technique, 
which does not suppose user interaction, within the concurrent video data model. 

For this purpose we first present forward commutativity predicates of the concur-
rent video editing operations: 

Table 1. Forward commutativity relation (symmetric) 

Operations Edit(ID, VS) Insert(VS, ID, 
POS):OUT Delete(ID) Move(MID, ID, 

POS):OUT 
Edit(id, vs) id ≠ ID    
Insert(vs, 

id, pos):out id ≠ ID id ≠ ID   

Delete(id) id ≠ ID id ≠ ID true  

Move(mid, 
id, pos):out id ≠ ID 

mid ≠ ID ∧ 
id ≠ ID 

mid ≠ ID ∧ 
id ≠ ID 

{mid, id} ∩ 
{MID, ID} = ∅ 

Apparently, the predicates specified in the above table demonstrate that operations 
manipulating different video segments always commute. Moreover, the same clips 
can be deleted concurrently by several users, and video extracts moved along the 
timeline can be simultaneously modified by other participants. The latter is especially 
important since it allows cooperating authors to distinguish editing and ordering of 
particular clips as independent tasks. Thereby, the overall approach really offers a 
high level of concurrency to the co-workers, even though they are not encouraged to 
operate simultaneously on the same video clips. 

Now, when proper commutativity relations are defined, they should be exploited to 
determine conflicts between users’ activities. According to the history merging algo-
rithm [20], two activity histories are basically considered to be compatible if their 
constituting operations pairwise commute. But generally, there may be certain situa-
tions in which this algorithm will lead to fictitious conflicts. For example, have a look 
at the following actions of Alice and Bob on some initial video activity tree: 

Alice: [Edit(ID, AliceVS)] 
Bob:   [Insert(NewVS, ID, 0):{NewID,..}] [Edit(SomeID, BobVS)] [Delete(NewID)] 

Evidently, in his work Bob inserts a new video extract into the same clip which Al-
ice edits and thus, a conflict is detected between these operations. However, later Bob 
removes the new segment from the media stream. Therefore, the mentioned conflict 
in fact stays only in the activity histories, but on the data level the results of such in-
dividual work are certainly compatible. 

Fictitious conflicts, like one just described, take place since the deletion operation 
acts as an inverse for the insertion. This is the reason why we have designed the dele-
tion algorithm of concurrent video in a way to rollback when possible the effect of the 
respective preceding insertion, as stated in definition 11. 



Another noticeable aspect of history maintenance that we have introduced in our 
model is utilization of the masking concept [4]. Intuitively, a subsequent method 
masks a preceding one if the effects of the earlier operation turn out to be completely 
overwritten by the effects of the later one, thus, the former instance can be removed 
from the history without affecting the workspace state. In particular, the behavior of 
the deletion and editing algorithms, which remove preceding private instances from 
the processed node are based on the described concept. 

As a consequence of these improvements in history maintenance, we become able 
to avoid certain fictitious conflicts and manage to reduce the amount of data kept 
within the nodes by removing masked operation instances. At the same time efficient 
implementation of the above features becomes possible due to storing of the activity 
history within a video tree. 

5   Conclusions and Future Work 

In this paper we have presented the concurrent video data model as a formal basis for 
collaborative video authoring environments. 

The principal advantage of our approach lies in the fact that we have defined a sin-
gle tree-based data structure for modeling both the underlying media stream and co-
operative transactions. In spite of such duality, concurrent video undoubtedly satisfies 
basic requirements of authoring applications as well as the needs of multi-user envi-
ronments in an elegant and efficient manner. 

Moreover, the results of our work are general enough to be applicable to other 
types of stream data. For instance, by simple renaming of frame sequences and video 
segments into sample sequences and audio segments, the concurrent video model can 
be successfully transformed into concurrent audio that may be found suitable for co-
operative editing of audio streams. 

Finally, we consider incorporation of versioning support and development of intra-
segment editing operations as probable directions of further research. 
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