
A. Marshall and N. Agoulmine: MMNS 2003, LNCS 2839, pp. 32–45, 2003.
© IFIP International Federation for Information Processing 2003

A Proposal for Distributed Conferencing on SIP Using
Conference Servers

R. Venkatesha Prasad, Richard Hurni, and H.S. Jamadagni

Centre for Electronics Design and Technology, Indian Institute of Science
Bangalore – 560012, India

{vprasad, hsjam}@cedt.iisc.ernet.in, hurni@ieee.org

Abstract. Session Initiation Protocol (SIP) is the de facto standard for Voice
over IP implementations. Although this standard does not define conferencing
directly, many drafts and papers suggest extensions and solutions to this essen-
tial service. In this paper, we first define the issues that are to be considered
when building a conference service, and then we motivate our work on some of
the limitations of the existing suggested solutions. This framework facilitates
the conference control and media handling of a VoIP conference and aims to
create a scalable and distributed conferencing system both in terms of load and
control. The conference control as well as media is distributed over the network
using SIP Servers and Conference Servers, which are described. The floor con-
trol is made dynamic by using a metric called Loudness Number [10] that pro-
vides a feel of a physical face-to-face conference.

1 Introduction

The growth of Internet encouraged many applications to be ported on the packet-
switched network. Transporting the telephony services on the Internet is an exciting
assignment and in particular the conferencing facility. We believe that VoIP applica-
tions are to be seen from two different aspects: (a) from the technology point of view,
and (b) the users’ perspective, requirements and interactions.

There are a lot of discussions amongst HCI (Human-Computer Interaction) and
CSCW (Computer-Supported Cooperative Work) communities, which mainly deal
with the ethnomethodological issues of users’ social interactions and about the use of
ethnomethodology in designs of applications for CSCW. Unfortunately, the aggressive
pace of technical advancements has far outstripped development of metrics and tech-
niques for characterizing and evaluating the novel communication environments. This
approach ignores the functional utility of the environment that is used for collaboration
[2]. Thus, we take an approach that considers both the aspects, namely, the technical
and the functional.

A conference basically connects many Clients on a single call by mixing their audio
streams in the conference into a single stream and playing it at each end-user. For the
conference establishment, maintaining and termination the selection of a signalling
protocol is necessary. But there are many more issues to be considered when building

A Proposal for Distributed Conferencing on SIP Using Conference Servers 33

a conference: packet delay, echo, deciding the number of Clients that can be speaking
simultaneously in a conference without degrading conference quality, automatic se-
lection of Clients to participate in the conference (floor control), mixing of audio from
selected Clients, handling Clients not capable of mixing audio streams and finally
playing of mixed audio at each Client.

The contribution of this paper includes putting together all the bits of design infor-
mation that are proposed in many Internet drafts and the proposed H.323 recommen-
dations for a Multipoint Processor (MP) to come up with a scalable and distributed
architecture for a SIP conferencing system, both on the conference control as well as
the audio media. We introduce Conference Servers that work with SIP Servers and
Clients and propose SIP messages for their communication needs. A conference solu-
tion using Conference Servers has been tested on a test bed.

2 Problem Formulation

We primarily take voice-only conferences by looking from the telephony service pro-
vider’s view of the VoIP without considering Video and Whiteboard media. The main
argument of our approach is that there is no crucial need for complex floor control
methods for voice-only conference. We believe that the conference quality depends
not only on the individual speech quality but also on the ability to allow impromptu
interruptions. We believe that assuming only one [4] participant speaks at any time
often results in losing the interactivity in a conference. There is a recent study by
Radenkovic et al. [16], which identifies this need for allowing many speakers to speak
at the same instant, supporting our observation of requirement of a conference. They
use distributed partial mixing of the speech streams but the drawback is speech losing
its spatial aspect when many streams are unnecessarily mixed. Thus we allow very
few streams to be mixed only at the time of playing out at the user terminals.

To be precise, we set out with the following wish list for the conferencing service:

1. Prospective Clients should first "register" with a control point to use the
conferencing software (allowing for billing if required);

2. An ongoing one-to-one call should be upgradeable to a conference by adding at
least a third participant;

3. The voice traffic on the network should be as low as possible;
4. Many participants are allowed to speak simultaneously (only a few of them are

selected to speak since allowing everyone does not increase the interactivity; fixing
the maximum number of simultaneous speakers is dealt in [13]);

5. Each Client should get the same set of audio streams for mixing, ensuring consis-
tency;

6. It should be simple to add/delete a Client to/from an ongoing conference;
7. The scalability must ensure that a large number of Clients dispersed over a wide

geographical area are easily handled;
8. Many modes of conference building must be supported (e.g. participants joining the

conferences by themselves or by invitation);

34 R.V. Prasad, R. Hurni, and H.S. Jamadagni

9. Conference architecture should also allow the use of features such as floor control
without disturbing interactivity;

10. No assumption about the availability of Multicasting in the network.

In this paper we take all the above requirements, some of them implicitly and some
explicitly. We use Users, Clients, User Agents (SIP terminology) and front end inter-
changeably depending on the context.

3 The Motivation

Ramanathan and Rangan [15] have studied in detail the architectural configurations
comparing many ways of building the conferencing architecture taking into considera-
tion the network delay and computation requirements for mixing. In [19], a discussion
on the architecture for a distributed multimedia conference as well as required control
protocol is reported. An overview of many issues involved in supporting a large con-
ference is dealt in [6]. The floor control is another major aspect that should be taken
into account while designing/building a conferencing tool and is well documented in
[3]. An IETF draft [18] discusses conferencing models with SIP in the background.
Implementation for centralized SIP conferencing is reported in [21]. There is a new
approach called partial mixing by Radenkovic [16] that allows mixed and non-mixed
streams to coexist allowing every ones’ speech to be heard. In all the above proposals,
while there are some very useful suggestions, they also have the following limitations:

• In an audio conference, streams from all the clients need not be mixed. Actually,
mixing many arbitrary streams [16] from the clients degrades the quality of the
conference due to the reduction in the volume (spatial aspect of speech). If the
number of streams mixed varies, this would lead to fluctuations in the volume of
every individual participant causing severe degradation in quality. There is a
threshold on the number of simultaneous speakers above which increasing the
number of speakers does not improve the conference quality.

• There cannot be many intermediate mixers, because it introduces a lot of delay by
increasing the number of hops, therefore it is not interactive.

• The floor control for an audio conference with explicit instructions for partici-
pants to talk would result in the conference becoming excessively an artificial
one-way speech rather than a live, free to interrupt physical conference.

• Partial mixing [16] has the same problem as that of mixing when more streams
are mixed but to allow impromptu speech, mixing is not done when the network
can afford high bandwidth requirements for sending/receiving the streams.

• For large conferences [18, 8] a centralized conference cannot scale up. With Mul-
ticasting, clients will have to parse many streams and traffic on clients’ network
increases unnecessarily.

A discussion about the limitations of existing SIP conference models (end-system
mixing, users joining, large multicast conference, dial-in conference server, ad-hoc
centralized conferences, dial-out conference server, centralized signalling and distrib-
uted media) is provided in [12].

A Proposal for Distributed Conferencing on SIP Using Conference Servers 35

4 Our Approach

We will now highlight our approach towards building a scalable and distributed
conferencing system. The two parts that must be taken care of in a VoIP conferencing
system are the following: (i) the front-end, consisting of the application program run-
ning on the Clients’ computer (end users) and (ii) the other application programs that
facilitate conferencing and conference control providing the back-end. We will not
deal with the first part in detail as we use a regular User Agent as described in [17].
The latter part, however, will be of great interest as it encompasses both the control-
ling and the media handling sides. In this outlook, we propose to have a distributed
control through SIP Servers (SIPSs), whereas Conference Servers (CSs) are special
entities that will handle only the audio part of the conference, including floor control.

4.1 Description of the Involved Entities

We consider a large conference with hundreds of participants that are situated in sev-
eral domains distributed geographically and interconnected by a WAN, such as the
Internet. A domain can be seen as a LAN with high-speed data transfer, etc. This
distributed architecture asks for distributed controlling and media handling solutions,
as centralized systems would not scale for such very large conferences. Looking into
these domains in more detail (Fig. 1), we distinguish the following relevant entities:

Fig. 1. Description of the different physical components in the proposed architecture.

• An arbitrary number of Clients (User Agents) following the prescriptions in [17].
• A single SIP Server (that will be abbreviated with the acronym SIPS) is present in

each domain and is entrusted with all the controlling aspects for the conference(s)
under way between one or many Clients in its domain. A SIPS can be viewed as a
physical entity that encompasses different logical roles, namely a SIP Proxy Server
(which was assumed to be able to generate SIP messages in [12], an assumption
that we suppress here because of the presence of the B2BUA), a SIP Registrar
Server, a SIP Redirect Server and a SIP B2BUA (Back-to-Back User Agent),
which are defined in [17]. This physical implementation enables the handling of in-

36 R.V. Prasad, R. Hurni, and H.S. Jamadagni

coming/outgoing SIP messages by one or another logical entity according to the
needs and let the other logical components know about the messages passing
through, even if they are not concerned, allowing them to take other actions if nec-
essary. In short, the SIPS can behave like any of the logical roles at any point of
time. The B2BUA (and therefore the SIPS) needs to be stateful (in the SIP termi-
nology) and as it is a concatenation of an UAC and UAS, the B2BUA does not
need explicit definitions for its behaviour, i.e., it can perform the same tasks and/or
handle the same request messages as an UAC or an UAS. The B2BUA, being able
to perform more actions than a regular PS, will be the core entity for our confer-
ence-related signalling (explained in next subsection).
For the communication needs of the four logical entities in the SIPS, many inter-
faces are devoted to communication with the domain Clients (User Agents) [12].
Interfaces are also required to communicate with the SIPSs in other domains and
with the local Conference Server (see below). Furthermore, objects regarding the
calls or conferences currently under way to/from the domain are stored in the SIPS,
so that it has complete information about them (fulfilling the stateful condition nec-
essary for the B2BUA as described above). These conference objects (fully de-
scribed in [12]) contain relevant conference-level information, a list of all the Cli-
ents taking part in this conference, irrespective of their local or remote location. A
list of the SIPSs from other domains involved in that conference and a list of the
CS(s) operating in the local domain are included as well.
The SIPS taking care of all the control aspects has many advantages, viz., (a) it
works as a centralized entity that can keep track of the activities of the UAs in a
call/conference; (b) it does all the switching for providing PBX features; (c) it lo-
cates the UAs and invite them for a conference; (d) billing can be done as well.

• A Conference Server (CS) is a proposed entity that comes into the picture only for
the media handling part. Similar to SipConf in [21], a CS has the function of sup-
porting the conference; it is therefore responsible for the audio part, handling audio
streams using RTP [20]. A CS only takes commands from its peer SIPS. It can also
be used to convert audio stream formats for a given Client if necessary and can
work as Translator/Mixer of RTP specification behind firewalls. Even if the SIP
specification enables direct UA-to-UA media communication in a one-to-one call,
it is also possible to use the Conference Server for two-party calls, especially be-
cause it is then more functional to create a real conference by adding a third and
subsequently more participant(s).
A CS may be serving many conferences and many Clients at an instant of time in
its domain. However, when the number of Clients in a domain is very large, many
CSs can coexist in a single domain, each one of them taking care of a fraction of
the active Clients. We could implement a CS on a 1.3 GHz Intel PC running Win-
dows NT that supports up to 300 Clients, which shows that even if the number of
clients is large, the number of CSs can be kept small.
In each CS, the information about all other CSs involved in that conference is
stored, along with a flag indicating whether its router supports multicast. A list of
all the local Clients connected to this particular CS is also available.

A Proposal for Distributed Conferencing on SIP Using Conference Servers 37

We have based the design of our Conference Server on H.323’s Multipoint Proces-
sor (MP) [7]. In short, the MP receives audio streams from the endpoints, processes
these media streams and returns them to the endpoints. An MP that processes audio
shall prepare N audio outputs from M audio input streams by selecting, mixing, or a
combination of these. Audio mixing requires decoding the input audio to linear sig-
nals, performing a linear combination of the signals and re-encoding the result to
the appropriate audio format. The MP may eliminate or attenuate some of the input
signals in order to reduce noise and other unwanted signals. The limitation of H.323
is that it does not address the scalability of a conference as the architecture pro-
poses a cascaded or daisy chain topology [8].

Fig. 2. Schematic diagram of a Conference Server

Continuing with the definition of H.323’s MP, the main task of a CS (shown on Fig.
2 and also in [12]) is to pick N Clients out of M from the local domain that are in
the same conference based on some criterion. Audio packets from those N Clients,
along with their ID are to be sent to the other CSs handling the same conference.
Similarly, for each time slot (packet time), a subset F of Clients are selected from
the pool of packets from all other CSs plus the N Clients selected locally and these
packets are mixed and played out at the Clients. According to [13], the cardinality
of F, |F| is N and is fixed to three. The flow of audio packets in the system is de-
picted on Fig. 4 (plain lines).
When comparing our proposal with the ones in the literature, we see that CSs take
the commands from a SIPS to which they are attached, similar to Selectors of [9].
However, it makes sense to keep CSs out of all the controlling work from the point
of view of a total VoIP service. This is not the case of the Conference Server of
[21, 8] which has to do both the work, i.e., conference enabling and floor control.

4.2 Making the Entities Work Together

In order for all the involved entities to work together and provide the desired
conferencing service, they need to exchange messages of two different types:

38 R.V. Prasad, R. Hurni, and H.S. Jamadagni

• SIP control messages which are either sent via TCP or UDP, using a timeout in
the latter case.

• RTP audio packets, which can be between two UAs in the case of a point-to-point
call. Otherwise, first, a Client sends its audio packet to its associated local CS and
later CSs exchange their packets (if there are more than one). Then, according to
the algorithm defined above, at most three Clients’ packets are selected for every
time slot and sent on multicast/unicast to other CSs. Then, the CS multicasts the
packets back to its associated Clients after selecting the best three streams
amongst the streams from other CSs and from its own Clients.

We have already seen that partial or complete information about a conference resides
in the User Agents, the SIP Servers and the Conference Servers. To be precise, we
draw a list of the conference-level control requirements in the different entities:

• User Agents know the IDs (IP addresses) of their local Register and Proxy Serv-
ers (that are fixed and does not have to be dynamically communicated to the UA),
which are necessary to start a call or conference. On the other hand, the address of
a local CS is not known to the UA in advance, as there can be more than one CS
in a domain. There is thus a need to dynamically communicate that address to the
UA from the SIPS in its domain.

• A SIP Server knows a lot of information about an ongoing conference: First, it
knows the IDs of all registered Clients in a domain and also the IDs of the Clients
involved in a given conference. It is also aware of the IP address(es) of the CS(s)
handling the media part of the conference(s) in the domain. It also knows the
identity of remote SIPS in other domains. Most of the information must be dy-
namically obtained by the SIPSs when the conference is under way.

• A Conference Server knows the IDs of all the local Clients it must handle the
audio packets and the address of remote CSs so that it is able to send a subset of
local audio packets in each time slot. As it was decided that CSs would only
communicate to their local SIPS for SIP messages, new and dynamic information
will have to go through the SIPS before reaching a given CS, and will not go di-
rectly between those entities, unlike media packets.

The SIP standard defined in RFC 3261 [17] and in later extensions such as [14] can
establish, modify and terminate multimedia sessions. This standard does not offer
conference control services, however SIP can be used to initiate a session that uses
some other conference control protocol.

For these entities to communicate together and in order to maintain the SIP phi-
losophy in our conferencing system, we assume that the involved entities can both
receive and send SIP messages, which is the case of the UAs, the PSs and the
B2BUAs that have communication abilities [17]. The only extension needed is to
assume that the newly created CSs can send and receive a subset of available SIP
requests.

As the different entities need to communicate quite different information between
them, we selected a SIP request messages pair that could convey pre-agreed informa-
tion between these Clients/Servers, namely, SUBSCRIBE and NOTIFY. These two

A Proposal for Distributed Conferencing on SIP Using Conference Servers 39

messages are described thoroughly in [14] and can be shortly described as the SIP
framework for event notification where entities in the network subscribe to the state of
resources and are notified when those states change. The B2BUA will have a central
role, as it will be the SIPS logical component entrusted with handling of all the sub-
scriptions/notifications for all the entities within the SIPS.

In Figure 3, we present a diagram showing the messages pair when used. In mes-
sage 1, the CS subscribes to be notified of events by the SIPS which message body
contains a description of the resource it is subscribing to. This first message is ac-
knowledged by message 2. The SIPS immediately sends a NOTIFY message (3) so
that the CS knows the present state of the resource. Later, as soon as an event happens
to the subscribed resource, messages 5 and 6 (similar to 3 and 4) are exchanged.

Fig. 3. SUBSCRIBE-NOTIFY message exchange example

In our conferencing environment (and with the help of the defined list of required
information every entity is holding), we can draw a precise list of resources a given
entity will subscribe to, and also to what other entity it will hold for that particular
subscription. The subscription dependencies are drawn on Fig. 4 (dotted lines) and we
make the following list as well:

• UAs will subscribe to their local SIPS to be notified to know which CS will han-
dle their audio packets. They may also subscribe to their SIPS to be notified of the
joining of every other UAs in order to have a good picture of the conference.

• A SIPS has a subscription with the local registered UAs so that it is informed of
changes about their participation in the conference (for e.g. joining, BYE, etc.),
making it stateful. They also have to subscribe to the other SIPSs in other do-
mains to pass information to them about the ongoing conference (so it can also
provide the local CS(s) with some pertinent information) about UAs joining, and
the address of other CSs to pass it on to CSs of its domain. We thus see that by
extension all the SIPSs must subscribe with each other (full mesh).

• CSs will subscribe to the local SIPS to be informed about the other CSs present in
the conference. It will help in knowing about the UAs, media packets from which
it will have to handle in a conference.

40 R.V. Prasad, R. Hurni, and H.S. Jamadagni

Fig. 4. The message flow between different entities. Signalling messages are shown in dotted
lines (with the subscription dependencies), whereas audio packet flow is shown in plain lines.

4.3 Loudness Number (LN)

A basic problem to be solved by the CSs is the following: in a mixing interval, how
should it choose N packets out of the M it might possibly receive? One way to do this
would be to rank the M packets received according to their energies, and choose the
top N. This is usually found to be inadequate because random fluctuations in packet
energies can lead to poor audio quality. This indicates the need for a metric different
from mere individual packet energies that should have the following characteristics:

• A person who is speaking should not be easily cut off by transient spikes in am-
plitude of the other participants. This implies that a speaker should have some
“weight” depending on his past activity (also called “persistence” or “hangover”).

• By the same token, a participant who wants to interrupt the speaker will have to
raise his voice and keep trying for a little while in order to break in. In a real-life
conference, the body language of a participant often indicates that he wants to in-
terrupt. But in the audio conferencing scenario under discussion, a participant’s
intention to interrupt can only be conveyed through the loudness metric on the ba-
sis of which the packets to be mixed are selected.

As a result, we use LN for conference control and floor control. A CS selects at most
three Clients to speak to the participants of a conference. The LN and its generation
are discussed in [10] and as such we have omitted a thorough discussion about it here.

4.4 Hybrid Floor Control

We propose two floor control mechanisms: (1) Distributed Floor Control that pre-
serves the interactivity by means of using LN with three floors. The interactivity is

A Proposal for Distributed Conferencing on SIP Using Conference Servers 41

preserved due to the design of LN and allowing all the participants to speak im-
promptu to the participants. (2) Compensatory Floor Control is used for avoiding the
conference becoming messy, which is a remote possibility. For the purpose, we allow
one reserved floor apart from the freely available three. A distributed mutual exclusion
algorithm suggested in literature [4] running at PSs may be used for controlling this
floor; besides, we propose to grant this floor to the conference moderator (if any, and
if required). These two floor controls co-exist since the mixing is done at the clients
(or last CSs if there are some dumb clients).

4.5 An Example

We will now introduce a real example of the capabilities of the proposed architecture.
We assume the following configuration: two domains, namely Domain A and Do-
main B that are interconnected by the Internet. Both those domains have a SIP
Server (SIPS-A and SIPS-B) as well as one Conference Server (CS A and CS B).
Furthermore, there are two potential SIP Clients in Domain A, i.e., Client A1 and
Client A2, and one in Domain B, Client B1.

Intra-domain setup phase. We will first introduce the phase that occurs in each
individual domain before any conference can take place and is necessary so that all
involved entities perform some pre-conference required tasks. The message exchange
for domain A is shown on fig. 5, where we can distinguish into 3 different parts:
• Part 1 sees the registration of CS A to SIPS-A: That way, CS A will be in-

formed about UAs joining on one hand and about the addresses of other CSs it
will have to send media packets to, on the other hand. The "NOTIFY CS A" re-
quest contains no information but is compliant with the SIP specification.

• Part 2 and Part 3 consist of each Client registering with its local Registrar Server.
Then, the clients subscribe to their local SIPS so that they are kept informed of
future calls/conferences and CS handling them. After that, SIPS-A registers to
the client to be kept informed about its state and leading to a stateful SIPS.

After this initial setup phase, a conference may start at any time inside a domain.

Inter-domain setup phase. After the intra-domain setup phase and before any confer-
ence can take place between different domains, an inter-domain setup phase must take
place. This phase would actually be contained in a “remote invitation phase” (ex-
plained below). When the SIPS at Domain A receives the third message of the
INVITE/200/ACK three-way handshake used to establish SIP sessions, it is then sure
that the remote Client situated in Domain B will be included in the conference and
thus SIPS-A subscribes to SIPS-B so that it is kept informed about the events in
their respective domains. In part 2, the same occurs in the opposite way. Then, if many
more domains are involved in the conference (e.g. Domain C), SIPS-A will make
sure that those other SIPSs know about the joining of the domain:

42 R.V. Prasad, R. Hurni, and H.S. Jamadagni

Fig. 5. SIP messaging during intra-domain setup phase

• SIPS-A tells SIPS-B about SIPS-j (and all other SIPSs if any). Then SIPS-B
would contact each and those would also subscribe to SIPS-B. Whenever SIPS-B
subscribes to SIPS-j, it would be reciprocated by SIPS-j subscribing to SIPS-B.

• In a conference where users join themselves (also called an open conference),
then the SDP [5] would have the initiator domain (say SIPS-j) to which the new
SIPS-k would subscribe and get the information about all the other SIPSs.

However, only one inter-domain setup phase can occur between SIPSs in each confer-
ence as after this phase, they will not need to start another setup phase as they can
already communicate. When all SIPSs in a conference have subscribed to each other, a
full mesh of SIPSs is created, which is a guarantee that signalling information is
passed according to the needs. In part 3, each SIPS notify their local CS about the ID
of the remote CS that they have just been notified of in the form of NOTIFY message.

Local Invitation. Now, we will assume that Client A1 invites Client A2,
which are in the same domain. This will start the conference (actually a one-to-one
call).
In the first part, Client A1 invites Client A2 with a normal SIP invitation mes-
sages exchange as defined in [17]. The messages go through the local Proxy Server,
which is contained in SIPS-A. In the second part, SIPS-A sends a NOTIFY mes-
sage to CS A to inform it that two local Clients (with their IDs) have joined the con-
ference. That way, CS A will be able to handle their audio packets. In the third part,
SIPS-A notifies Client A1 and Client A2 with the ID of CS A so that they
will know which is their media handling Conference Server.

Remote Invitation. The next motivating step happens when one of the Clients in
Domain A wishes to invite a Client from Domain B. Let us assume that Client
A1 invites Client B1 in the conference. The message exchange for remote invita-
tion is depicted in Fig. 6.

A Proposal for Distributed Conferencing on SIP Using Conference Servers 43

In part 1, a normal SIP invitation takes place between Client A1 and Client B1.
But as the ACK message flows through SIPS-A, and if the inter-domain setup has
not already occurred between the two involved domains, this phase must take place
right away. In the future, this will not happen again as this is an only-once phase. In
part 2, SIPS-A notifies SIPS-B about relevant conference-level information (such
as the handling CS in the domain, the ID of the involved local Clients). Then SIPS-B
does the same with SIPS-A. Then, in part 3, CS A is notified of the ID of CS B that
has just joined the conference (known through the previous messages exchanged). In
part 4, SIPS-B does the same with its local Conference Server, CS B.
Now that all the entities have been provided with the necessary information to make
the conference take place between the involved parties, the conference can start. The
deletion of clients is done according to the same scheme when necessary, i.e. sending
of normal BYE SIP messages between entities and notification of the other parties.

Fig. 6. Flow of SIP messages when Client A1 invites Client B1

5 Conclusion

In this paper, we have presented a new paradigm for VoIP conferencing. The fully
distributed nature of SIPS and Conference servers make the scheme highly scalable.
Multicast is not a mandatory requirement for our solution. However, it can be used
with advantage, if available. The maximum number of hops for audio packets is lim-
ited to two (between two CSs), reducing the delay. The audio packets are transmitted
using an RTP stack. The traffic is further reduced by VAD techniques [11], as an
option. This paradigm, along with LN, supports an interactive conference without
explicit floor control and allows impromptu speech while compensatory floor control
co-exists. Further, this paradigm supports conferencing requirements listed in [8] and
in section 2 of this paper. Moreover, we can support other facilities such as chat, PBX,
and Voice Mail Service on the same set up. These facilities are based on a peer-to-
peer communication mode. The main contribution of this work is a greatly improved

44 R.V. Prasad, R. Hurni, and H.S. Jamadagni

quality of conference due to the impromptu speech permitted without the use of ‘gag-
ging’ floor controls. Further reduction of traffic is possible by using the characteristics
LN. At present we are investigating the effective use of SCCP [1] (and CCCP) in our
implementations.

References

[1] C. Bormann, J. Ott, “Simple Conference Control Protocol”, Internet Draft, Dec. 1996.
[2] E. Doerry, "An Empirical Comparison of Copresent and Technologically-mediated

Interaction based on Communicative Breakdown", Phd Thesis, Graduate School of the
University of Oregon, 1995.

[3] H. P. Dommel and J.J. Garcia-Luna-Aceves, "Floor Control for Multimedia
Conferencing and Collaboration", J. Multimedia Systems, Vol. 5, No. 1, January 1997,
pp. 23–38.

[4] A. J. González, “A Distributed Audio Conferencing System” MS Project Department Of
Computer Science Old Dominion University, Norfolk, VA 23529, July 28, 1997.

[5] M. Handley and V. Jacobson, "SDP: Session Description Protocol", RFC 2327, IETF,
April 1998.

[6] M. Handley, J. Crowcroft et al., "Very large conferences on the Internet: the Internet
multimedia conferencing architecture", Journal of Computer Networks, vol. 31, No. 3,
Feb 1999, pp. 191–204.

[7] ITU-T Rec. H.323, “Packet based Multimedia Communications Systems”, vol. 2, 1998.
[8] P. Koskelainen, H. Schulzrinne and X. Wu, "A SIP-based Conference Control Frame-

work", NOSSDAV’02, May 2002, pp. 53–61.
[9] R Venkatesha Prasad et al., “Control Protocol for VoIP Audio Conferencing Support”,

International Conference on Advanced Communication Technology, Mu-Ju, South Ko-
rea, Feb 2001, pp. 419–424.

[10] R Venkatesha Prasad et al., "Automatic Addition and Deletion of Clients in VoIP
Conferencing", 6th IEEE Symposium on Computers and Communications, July 2001,
Hammamet, Tunisia, pp. 386–390.

[11] R Venkatesha Prasad, H S Jamadagni, Abhijeet, et al “Comparison of Voice Activity
Detection Algorithms” 7th IEEE Symposium on Computers and Communications. July
2002, Sicily, Italy, pp. 530–535.

[12] R. Venkatesha Prasad, Richard Hurni, H S Jamadagni, “A Scalable Distributed VoIP
Conferencing using SIP”, To appear in Proc. of the 8th IEEE Symposium on Computers
and Communications, Antalya, Turkey, June 2003.

[13] R Venkatesha Prasad, H S Jamadagni and H N Shankar, "On Problem of Specifying
Number of Floors in a Voice Only Conference", To appear in Proc. of IEEE ITRE
2003, Newark, NJ, Aug. 2003.

[14] A. B. Roach, " Session Initiation Protocol (SIP)-Specific Event Notification", RFC
3265, IETF, June 2002.

[15] S. Ramanathan, P. Venkat Rangan, Harrick M. Vin, “Designing Communication Ar-
chitectures for Interorganizational Multimedia Collaboration”, Journal of Organiza-
tional Computing, Vol. 2, Nos. 3&4, 1992, pp.277–302.

[16] M. Radenkovic et al, "Scaleable and Adaptable Audio Service for Supporting Collabo-
rative Work and Entertainment over the Internet", SSGRR 2002, L'Aquila, Jan. 2002.

[17] J. Rosenberg, H. Schulzrinne et al., "SIP", RFC 3261, IETF, June 2002.

A Proposal for Distributed Conferencing on SIP Using Conference Servers 45

[18] J. Rosenberg, H. Schulzrinne, “Models for Multy Party Conferencing in SIP”, Internet
Draft, IETF, July 2002.

[19] E. M. Schooler, "A Distributed Architecture for Multimedia Conference Control",
Technical Report ISI/RR-91-289,USC/ISI, Marina del Rey, CA, Nov. 1991.

[20] H. Schulzrinne et al., "RTP: a transport protocol for real-time applications", RFC 1889,
IETF, Jan 1996.

[21] K. Singh, G. Nair and H. Schulzrinne, "Centralized Conferencing using SIP", Proceed-
ings of the 2nd IP-Telephony Workshop (IPTel’2001), April 2001.

	1 Introduction
	2 Problem Formulation
	3 The Motivation
	4 Our Approach
	4.1 Description of the Involved Entities
	4.2 Making the Entities Work Together
	4.3 Loudness Number (LN)
	4.4 Hybrid Floor Control
	4.5 An Example

	Conclusion
	References

