1

Dynamic Configuration of Multimedia Applications

Slim Ben Atallah, Oussama Layaida, Noel De Palma, and Daniel Hagimont

INRIA, SARDES Project
ZIRST-655, Avenue de ’'Europe - 38334 Montbonnot Saint-Ismier Cedex — France
Slim.Benatallaheinria.fr

Abstract. Streaming multimedia applications, such as video on demand or
conferencing are increasingly deployed in heterogeneous and mobile
environments including Workstations, PDAs, mobile phones, etc. These
applications are very resource demanding and in general, they need to be
dynamically adapted when executed on low capability terminals. The proxy-
based content adaptation approach is well suited to transparently adapt in real
time multimedia data on intermediate nodes without modifying the application.
In this paper, we report on experiments on dynamic configuration of such
proxies by using a configuration language called APSL (Adaptation Proxy
Specification Language). We developed a configurable proxy allowing
adaptation of existing videoconferencing applications, and evaluated the
performance benefits of the proxy approach using a DirectShow/COM-based
framework.

Introduction

Due to the significant growth of network technologies, distributed computing
environments are becoming increasingly heterogeneous. This heterogeneity mainly
covers two aspects:

Hardware/Software. Many mobile hand-held devices have appeared such as PDAs
or mobile phones. In general, these devices are characterized by low CPU,
memory, network or display capabilities. On another hand, the Internet, the
operating systems, middleware environments or software libraries which are used
by applications may introduce heterogeneity in terms of availability, reliability,
latency, network bandwidth, network protocols, data encoding formats, ...

Users’ requirements. The potential users of a given application may have very
different needs while using the application in a particular context. These
requirements may also vary for a same user between different application runs.
Moreover, it is important to consider the point of view of many different principals
such as a service or content provider, a service client, a network operator, etc.

An adaptation to hardware/software requirements may consist to adapt the encoding
format of a streamed video into the unique format supported by an end user terminal.
An adaptation to user requirements could consist in selecting in a multi-user
videoconferencing session the participants to be displayed on a terminal (e.g. all the
participants or one favorite participant). In both cases, the application has to be
adapted according to the requirements.

A. Marshall and N. Agoulmine: MMNS 2003, LNCS 2839, pp. 46-63, 2003.
© IFIP International Federation for Information Processing 2003

Dynamic Configuration of Multimedia Applications 47

Since it is not realistic to develop, for each application, multiple versions that respond
to several constraints, we propose to tackle the various forms of heterogeneity by the
development of adaptive distributed multimedia applications. Our objectives are
therefore two-fold:

1. Provide distributed multimedia applications with dynamic adaptation; that is the
ability for applications to adapt their behavior, at launch-time or run-time, to
various context constraints.

2. Propose transparent adaptation that does not require any modification of the
original applications’ code.

One important motivation is to be able to adapt applications without any modification
to the original code. More importantly, we don’t want to reconsider the legacy
software (web servers, videoconferencing tool, video players) installed on end-user
machines. In order to achieve this goal, we follow a proxy-based architecture where,
in a distributed client/server multimedia application, a proxy site between the client
and the server is responsible for intercepting interactions (streams) between the two
parties and performing the adaptation. An adaptation consists in modifying the
content of the stream which traverses the proxy.

The second important motivation is to respond to the various constraints previously

enumerated. Since these constraints may be very different and are only known at

runtime, we need to dynamically configure the adaptation software on the proxy

nodes according to these constraints. Therefore, our approach is to provide a

framework for dynamic configuration of a multimedia proxy.

We conducted several experiments on a DirectShow [5] platform. With its widespread

distribution and its efficient implementation, this platform is now considered as a

reference platform for building multimedia applications. These experiments aim at

validating this approach by implementing several applications and adaptation
scenarios. We also evaluated the obtained performance benefits. The lessons learned
from this experiment are the following:

— Performing multimedia application adaptations on proxy machines is a means to
take into account a very broad range of requirements coming of the hardware,
software and user environments, without reconsidering the applications installed on
end-user machines.

— Dynamically-configured component-based adaptations provide the required
flexibility to deal with the heterogeneity of the requirements.

— The proposed configuration approach implemented on the DirectShow
environment allows real time adaptation of video contents providing a good
tradeoff between flexibility and performance.

This paper is structured as follows. Section 2 discusses the related work. Section 3

presents the configuration of proxies. Our experiments are then detailed in section 4.

Section 5 presents results of a performance evaluation. Section 6 concludes the paper

while enumerating some perspectives to this work.

48 S.B. Atallah et al.

2 Related Work

Many component-based environments have been proposed to support the building of
architecture-based applications. These environments exploit software architectures to
provide dynamic configuration mechanisms in order to adapt applications according
to execution constraints [3], [15], [13]. However, very few projects have validated the
effectiveness of dynamic configuration with resource intensive applications such as
multimedia applications.

Kon [14] describes a framework which allows configuring proxy nodes (called
Reflectors) in order to adapt the distribution of multimedia data. However, the main
focus is on the adaptation of network routing. Blair [4] describes a framework to
adapt multimedia applications for mobile environments. Some proposed scenarios
(related to video transcoding) are similar to ours, but their implementation relies on a
CORBA platform and they don’t report any performance evaluation.

Many projects have addressed the issue of the adaptation of multimedia data delivery
according to the application context. A first class of solutions addresses this issue by
modifying the servers, the network protocols or the encoding formats used to deliver
multimedia data. Sisalem [22] extends servers in order to adapt the emitted streams
according to clients’ requirements. In [18], McCanne uses multi-layered encoding and
transmission, which consists in dividing the video into several cumulative layers, each
corresponding to an increment of quality. By selecting the appropriate number of
layers, receivers can control the amount of video bandwidth they consume, and solve
bandwidth heterogeneity problems. However, these solutions only address network
bandwidth; adaptations do not consider clients' hardware limitations and software
incompatibilities. Moreover, they require modification of the software installed on
Internet hosts (clients and servers).

The alternative solution uses intermediate nodes (proxies) inside the network to make
additional treatments on media streams. These entities can be deployed for example
by ISPs across the Internet, by network operator or individual users in their private
networks. Multimedia content is adapted dynamically so that it matches the variable
network or host capacities, without requiring modification on the end machines. Fox
[7] presents the advantages of infrastructural proxies and proposes design principles
to effectively address heterogeneity problems. Various research works have been
made in this area [1], [20], [23]. Most of existing works addressed only adaptations of
discrete media, such as HTML pages and images [10][16]. Some projects proposed
gateways to adapt video streams. For example, VGW [1] can transcode RTP video
streams from high bit-rate MJPEG format into 128 Kbps H.261 video streams which
are more suitable for MBone sessions. In [24], an MPEG specific proxy-based content
adaptation gives more priority to I-frames than P and B-frames by selecting frames to
drop when congestion occurs. A RTP to HTTP gateway, described in [12],
interconnects a multicast network with the World Wide Web, and enables Web client
to receive video streams from multicast conference sessions. However, all these
projects were proposed to solve a particular problem and focused on a specific
encoding format or protocol conversion.

Our objective is to provide proxies with the flexibility required to implement any of
these adaptations. Moreover, such a flexibility aims at providing content based
adaptation of video stream in order to take into account both QoS problems and user

Dynamic Configuration of Multimedia Applications 49

requirements. In this vein, we propose to use a component-based framework which
allows dynamic configuration of a context-specific adaptation proxies.

3 Dynamic Configuration of Adaptation Proxies

3.1 Proxy Implementation

Our goal is to dynamically configure adaptation proxies. We provide a proxy
configuration language to define the adaptation and also a flexible configuration
programming interface allowing deployment and reconfiguration of proxies. We aim
at providing a flexible solution of configuration which allow deployment and
configuration of proxies on several multimedia environments. We experiment the
implementation of dynamic configuration on the Microsoft’s DirectShow 8.0
environment. This environment provides programmers with an efficient toolkit for
building multimedia applications. It is based on the COM component model 8 and it
provides abstractions for the manipulation of multimedia data, such as filters, pins and
filter graphs.

A filter is the basic building block in DirectShow. It is a software component offering
a specific multimedia-related functionality, such as capturing, encoding/decoding and
rendering multimedia data. Using inheritance techniques, programmers can build
additional filters. Several filters can be combined (i.e. interconnected) in order to form
a filter graph that represents a particular configuration. The interconnection of several
filters is possible thanks to pins, which are filters’ input and output ports.

3.2 Components

All needed functions for networking and multimedia data processing are provided by
separate basic components. A component is characterized by a set of input and output
stream interfaces and a processing unit. Moreover, each DirectShow component
(Filter) provides one or more configuration interfaces which allow configuring the
component. These basic components are the following:

e Networking components: They implement standard Internet protocols used for
multimedia streaming, such as HTTP1 and RTP.

e Decoder/Encoder components: They aim at compressing/uncompressing the data
into a chosen intermediate format (e.g. RGB24, YUY2). We provide different
encoder/decoder components which can be used to encode/decode standard
multimedia format such as H261, H263, MPEG1, MPEG?2 or MJPEG.

o Transformer components: Transformer components implement the basic content
based adaptation code. For instance, a transformation component can receive as
input a video stream in YUY?2 format, resize it and deliver the modified video as
output. Each transformer component provides a very basic adaptation on a stream
in an intermediate format. Complex stream transformations can be built by

!'We had to implement networking components for HTTP as they were missing in DirectShow.

50 S.B. Atallah et al.

combining several basic components. Below are examples of transformer
components that we implemented:

- Image-scaling components resize video frames, which is useful to adapt a
stream for devices with limited display capacities. They are sometimes
required to enable transcoding operations, for example MPEG videos may be
transmitted in any size while H.261 videos require predefined sizes such as
CIF, QCIF or SQCIF.

- Color-space-scaling components reduce the number of entries in the color
space, for example from 24 to 12 bits, gray-scale or black-and-white.

- Data insertion components can be used to insert an image or a text in a
video. We used such components to integrate commercials, subtitles in video
and textual notifications.

- Mixer Component allows building of a mixed video stream resulting from
several input sources. The resulting video stream is an (NxM) matrix. Each
element of this matrix results from an image-scaling adaptation of a particular
stream.

- Multiplexors/Demultiplexors are used to aggregate/separate audio and video
data in a multimedia stream. For instance, an MPEG Multiplexor allows
merging an MP3 audio and an MPEG-1 video in a MPEG2 stream. In the
presentations of our scenarios, we sometimes omitted these components since
our primary focus is on video adaptations.

- Duplicator components are used to replicate an output media stream.
Duplication is useful when a stream has different targets with different
requirements. Duplicators are used in the videoconferencing application further
considered.

Data insertion, mixer, duplicator and some networking components were not provided
by the original DirectShow framework. These additional components and also the
configuration manager code are built on top of this framework to make possible
instantiation of proxies performing content-based adaptations.

3.3 Adaptation Sessions

A session is instantiated as a graph of interconnected components that implements the
adaptation process. The adaptation process is built from the basic components
presented above (receivers, decoders, transformers, encoders ...). These components
are configured and interconnected together to achieve the transformation of the
multimedia stream. The configuration of sessions provides the flexibility required by
the adaptation process to fulfill the application needs.

The adaptation process is split up into several steps. The input stream is decoded into
an intermediate representation, and then transformed and delivered to the encoder,
which produces an adapted stream in output. During this process, adaptations can be
applied at different levels in the data path. Fig 1 describes the configuration of a
session at a high-level.

Dynamic Configuration of Multimedia Applications 51

:

7

ROR2
R{R32
YUY2
UYvyY

Ak

ST

TG

Fig. 1. Video transcoding scheme

Multimedia data is generally transmitted with application-level protocols such as,
HTTP, RTP, etc. When configuring a session, an appropriate component? is chosen to
receive a media stream from the network and to deliver it to the appropriate decoder.
At this level, the appropriate decoder component is configured with the intermediate
format in which uncompressed data will be represented. This intermediate format
allows us to perform additional treatment on data that cannot be performed in a
compressed format. Support for multiple intermediate formats allows us to make an
optimized configuration to perform these effects (for example, resizing an image in
YUY?2 format is faster than in RGB format).

At the intermediate level, the data can be transformed in various ways by combining
transformer components together in the session’s configuration. Changing the
interconnections between these transformer components allows customizing the
adaptation process according to the requirements.

At the encoder level, an encoder is selected and configured to offer the best-suited
data rate that matches network and receiver’s states and capacities. The target data
rate is obtained by modifying the rate of encoded frames or by degrading the
encoding quality. The obtained stream is sent using the protocol used by the network
target independently from the protocol used to receive the original data from the
server.

3.4 APSL: Adaptation Proxy Specification Language
In order to help the definition of a session, we propose an XML-based specification

language called APSL, which allows describing several QoS parameters and User
requirements such as input video format, network capabilities, terminal capabilities,

2 1In fact, one or several networking components may be necessary to receive video streams. As
described further in the paper, a videoconference adaptation session may rely on several
networking components to receive several input streams.

52

S.B. Atallah et al.

connection protocols, etc. An APSL specification may be composed of the following
definitions:

INPUT : defines a list of members. Each member describes a particular input
source of the proxy. Attributes of an input member are : PROTOCOL, USER,
TERMINAL, and DATA.

OUTPUT: defines a list of output destinations members. Each member describes a
particular adapted target streams. OUTPUT members are also defined using the
same INPUT member attributes.

PROCESS: defines the proxy architecture. We use a directed graph model to
define the adaptation process on proxies. Each graph node represents a particular
component. Components are bound using input/output PIN connections. The
Document Type Definition of APSL is detailed in Fig 2.

<!ELEMENT APSL (INPUT, OUTPUT, PROCESS) > & APSL element list
definition

< !ELEMENT INPUT (MEMBER+)>¢€ INPUT member list definition
<!ELEMENT OUTPUT (MEMBER+) > &< OUTPUT member list definition

<! ELEMENT

MEMBER (PROTOCOL, USER, TERMINAL, DATA)> &

INPUT/OUTPUT member definition

<!ATTLIST
< |ELEMENT
<! ELEMENT
< |ELEMENT
<! ELEMENT
< |ELEMENT
<! ELEMENT
< |ELEMENT
<! ELEMENT
< |ELEMENT
< | ELEMENT
< |ELEMENT
<! ELEMENT
<! ELEMENT
< |ELEMENT
<! ELEMENT
< |ELEMENT
<! ELEMENT
<! ELEMENT
< |ELEMENT
<!ATTLIST

ACTION (
H.263Encod
< |ELEMENT
<!ATTLIST
LINK IDREF
DIRECTION

MEMBER ID ID #REQUIRED>

PROTOCOL (NAME, DESCRIPTION, ARGUMENT*) >
USER (LOGIN, PROPERTIES) >

LOGIN (#PCDATA) >

PROPERTIES (#PCDATA) >
ARGUMENT (#PCDATA) >
DESCRIPTION (#PCDATA) >
NAME (#PCDATA) >

TERMINAL (CPU, DISPLAY, NETWORK) >
DISPLAY (XSIZE, YSIZE, COLORDEPTH) >

CPU (#PCDATA) >
NETWORK (#PCDATA) >
XSIZE (#PCDATA) >
YSIZE (#PCDATA) >
COLORDEPTH (#PCDATA) >
DATA (TYPE, CODEC+) >
TYPE (#PCDATA) >
CODEC (#PCDATA) >
PROCESS (COMPONENT*) >
COMPONENT (PIN+) >
COMPONENT
RESIZE | DUPLICATOR | H.261Encoder | MPEGEncoder |
er | MIXER) #REQUIRED ID ID #REQUIRED>

PIN (#PCDATA) >

PIN ID ID #REQUIRED

#IMPLIED

(OUTPUT | INPUT) #REQUIRED>

& PROCESS element definition

Fig. 2. APSL DTD.

Dynamic Configuration of Multimedia Applications 53

3.5 Proxy Configuration Architecture

A proxy can be configured through an APSL specification which describes the initial
configuration, including the proxy’s process architecture and the members’ attributes.
This APSL specification is interpreted by an APSL Engine which is responsible for
the instantiation of the associated adaptation session.

At a lower level, a Configuration Manager provides all the functions required to
instantiate and manage adaptation sessions. The API of the Configuration Manager is
invoked by the APSL Engine in order to instantiate a session based on an APSL
specification. The Configuration Manager implementation directly relies on
DirectShow/COM.

However, an adaptation session may have to be dynamically adapted in order to
respond to variations of the execution constraints (e.g. available resources). For this
reason, the API of the Configuration Manager is exported to allow direct management
of the adaptation session. It allows visiting and adapting the component-based
architecture of a session, or modifying the attributes of the session’s components.

The overall structure of the proxy environment is shown in Fig 3.

Proxy Adminisiralor

;
5 i
i | {rejconfignration | | APST. document | '
! 1

" 1

program
—————— I:——"————————————————II;-—h———————————
e .
ADSL Engine

Clomfignrafion Manager

LrirectShow 7 COM

Fig. 3. Overall structure of the proxy environment.

The administrator of the proxy can configure an adaptation session by providing an
APSL document which describes the required adaptation. He can also directly use the
Configuration Manager API to configure the required adaptation session. And finally,
this Configuration Manager API can be used to reconfigure an adaptation session, i.e.
to modify it in response to variations in the execution conditions.

4 Experiments

Our objective is first to validate the approach described above with the
implementation of realistic scenarios and second to show that it can be efficiently
instantiated, thus combining flexibility and performance.

We modeled an experimental environment involving several multimedia applications
and mobile handheld devices. The platform is based on PC workstations (PIII
700Mhz-256MB for VoD scenario, PIV 1800 Mhz-512MB for Videoconferencing
scenario) interconnected with an Ethernet Local Area Network (Ethernet 100 Mbps)

54 S.B. Atallah et al.

and mobile PDA (IPagq, ARM Processor 200 MHz, 32 MB RAM, Windows CE 3.0)
devices connected through a 802.11 Wireless access points. We experimented with
two applications: a video on demand service and a videoconferencing system. The
VoD application relies on a web server which hosts several MPEG movies encoded
with high quality parameters. The videoconferencing application distributes real-time
video streams using VIC [17], an application from University of California, Berkley.
The client side includes standard applications offering basic multimedia players; on
the PDAs, we used PocketTV [19] for streaming MPEG-1 movies using HTTP and
VVP [25] for real-time H.261 streaming.

4.1 VoD Scenario: Adaptation for Hardware/Software Capabilities of the PDA

In the first scenario, we consider the video on demand application for mobile
handheld devices (PDAs). Due to their limited processing, display and network
capacities, PDAs are only able to efficiently render streams with specific properties
(frame size, colors, quality factor and encoding format). To deal with such hardware
limitations, we configure a dedicated adaptation proxy. When the client sends an
HTTP request to the proxy (using the proxy URL instead of the original URL), the
VoD adaptation proxy parses it in order to extract the client properties and it invokes
the configuration manager API to instantiate a session according to the received
properties (the HTTP request fields give the following client’s properties: Accept-
encoding, color depth and frame size). Fig 4 gives the composition of the session
which adapts an original MPEG stream into an MPEG stream with smaller resolution

and color depth in order to fit PDA’s display capacities.
MPEG Image MPEG
decoder Scaler encoder

MPEG
Demulti-
plexor

MPEG
Multi-
plexor

HTTP
Receiver

Fig. 4. Adaptation for hardware capabilities

The instantiated session includes two networking components for receiving and
transmitting the HTTP streams. Between them, six additional components are
inserted. First, an MPEG demultiplexor separates the MPEG audio and video into two
streams, an MP3 audio stream and an MPEG-1 video stream. The video stream is
handled by an MPEG-1 decoder component, which uncompresses data into YUV
video frames. Then, an image-scaler component resizes video frames to QCIF
(176*144), transformed by a color down-scaler component into 16 gray-scale colors.
Notice that the quality factor of the encoder can also be dynamically adjusted. A
similar scenario is used to illustrate adaptation for software capabilities on the PDA.
In this context, the proxy transcodes the original stream into H.261 and forwards it to
the client.

Dynamic Configuration of Multimedia Applications 55

In addition to the transcoding operation, a third party may want to integrate other
services such as the insertion of commercial advertisement or personalized subtitles in
the video content.

4.2 Adapting VIC/VVP Videoconferencing Application: Video Stream Mixing
and Bandwidth Adaptation

Videoconferencing applications often involve more than two participants, each with
its own encoding format and terminal capabilities. The scenario that we implemented
focuses on the following problems:

— A client machine requires a high bandwidth to receive multiple streams and a high
processing capacity to decode and synchronize them before display.

— On the other hand, VVP which is the VIC version for PDAs does not provide
support for multiple streams visualization. We modified the conference
architecture (without any modification of VVP/VIC) in order to introduce a proxy
conferencing server which receives a stream from each participant, mixes the
streams in a single video stream which is sent to all participants.

VIC and VVP can be used in a multicast mode or as peer-to-peer applications. When
used with multicast mode, VVP receives all incoming video streams but can only
display one at the same time (due to the limited display capacity of the PDA). The
objective of our adaptation is first to reduce the used bandwidth (by emitting a single
stream from the proxy to the client machine), and second to allow display of all
participants’ videos on the VVP user interface.
The scenario that we consider describes a multiparty videoconference between five
terminals: A and B are two workstations running VIC with H.263, C and D are also
two workstation running VIC with H.261 CIF resolution, and E is a PDA running
VVP to just receive video in H.261 and QCIF resolution. The conference starts
between A, B, C and D. The participant connected via PDA “E” joins the conference
at a later time. For each Workstation participant, the proxy opens one incoming and
one outgoing stream. The incoming stream contains the media of that user and the
outgoing stream is the result of mixing all media streams into one stream, requiring
less bandwidth and less computing on the client. Fig 5 describes the configuration
graph resulting from parsing APSL configuration of the proxy.

For each incoming stream, the proxy instantiates an RTP source filter and the

appropriate decoder component. Streams received from A and B are resized into

QCIF. A central mixer component receives the three videos streams and produces a

mixed video stream in CIF size (4 QCIF quarters, one empty). As participants use two

different encoding formats, the mixed video is duplicated into two streams with a

duplicator component. The first one is encoded in H.263, duplicated again into two

streams and sent to participants A and B. The second one is resized to QCIF, encoded
in H.261 and sent to participant C and D. When user E joins the conference, the proxy
requests a new receiving branch (dotted bag on the left side of the figure). As this

participant requires H.261 encoding, the proxy inserts a duplicator after the H.261

encoder and a new RTP transmitter is created to send the mixed stream to E (dotted

bag on the right side of Fig 5).

56 S.B. Atallah et al.

RTP
trans-
mitter

' ‘
R’re
receiver

decoder

Fig. 5. Dynamic configuration of a videoconferencing proxy

The use of the duplicator components optimizes the configuration in order to prevent
redundant tasks. Rather than serving each user independently (e.g. with per-user
encoders and transformers), the configuration manager looks for an existing output
stream providing the same properties as those requested by the arriving participant.
Fig 6 shows a screen shot of the adapted VVP videoconferencing application in which
4 video streams are mixed and rescaled in order to be displayed on the PDA.

File Source Yiew

Fig. 6. VVP adapted user interface

Dynamic Configuration of Multimedia Applications 57

4.3 APSL Specification for Videoconferencing Adaptation Scenario

In order to configure the videoconferencing proxy, we used an appropriate APSL
specification (cf. Fig 7) which defines for each end-user terminal, the video format,

the network connections, and screen size.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE APSL SYSTEM "C:\inria\Sardes\M AD\code\MM\APS\apsl.dtd">
<APSL>
<INPUT>
<MEMBER ID="M1">
<PROTOCOL>
<NAME>RTP</NAME>
<DESCRIPTION>VICclient</DESCRIPTION >
</PROTOCOL>
<USER>
<LOGIN>USER1</LOGIN>
<PROPERTIES>194.199.25.10</PROPERTIES >
</USER>
<TERMINAL>
<CPU>PDA(StrongARM)</CPU>
<DISPLAY>
<XSIZE>176</XSIZE>
<YSIZE>144</YSIZE>
<COLORDEPTH>32bits</COLORDEPTH>
</DISPLAY>
<NETWORK/>
</TERMINAL>
<DATA>
<TYPE>Video </TYPE>
<CODEC>H.261</CODEC>
</DATA>
</MEMBER>
<MEMBER ID="M2">
</MEMBER>
<MEMBER ID="M3">
</MEMBER>
<MEMBER ID="M4">
</MEMBER>
</INPUT>
<QOUTPUT>
<MEMBER ID="M5">

</MEMBER>

<MEMBER ID="M6">

</MEMBER>

<MEMBER ID="M7">

</MEMBER>

<MEMBER ID="M8">

</MEMBER>

</OUTPUT>
<PROCESS>

<COMPONENT ID="C1" ACTION="RESIZE">
<PIN ID="P2" DIRECTION="OUTPUT" LINK="C3" />
<PIN ID="P1" DIRECTION="INPUT" LINK="M1" />

</COMPONENT>

<COMPONENT ID="C2" ACTION="RESIZE">
<PIN ID="P3" DIRECTION="INPUT" LINK="M2" />
<PIN ID="P4" DIRECTION="OUTPUT" LINK="C3" />

</COMPONENT>

<COMPONENT ID="C3" ACTION="MIX">
<PIN ID="P5" DIRECTION="INPUT" LINK="C1" />
<PIN ID="P6" DIRECTION="INPUT" LINK="C2" />

58 S.B. Atallah et al.

<PIN ID="P7" DIRECTION="INPUT" LINK="M3" />
<PIN ID="P8" DIRECTION="INPUT" LINK="M4" />
<PIN ID="P9" DIRECTION="OUTPUT" LINK="C4" />
</COMPONENT >
<COMPONENT ID="C4" ACTION="DUPLICATOR">
<PIN ID="P10" DIRECTION="INPUT" LINK="C3" />
<PIN ID="P11" DIRECTION="OUTPUT" LINK="C5" />
<PIN ID="P12" DIRECTION="OUTPUT" LINK="C6" />
</COMPONENT>
<COMPONENT ID="C5" ACTION="H.263Encoder">
<PIN ID="P13" DIRECTION="INPUT" LINK="C4" />
<PIN ID="P14" DIRECTION="OUTPUT" LINK="C8" />
</COMPONENT>
<COMPONENT ID="C6" ACTION="RESIZE">
<PIN ID="P15" DIRECTION="INPUT" LINK="C4" />
<PIN ID="P16" DIRECTION="OUTPUT" LINK="C7" />
</COMPONENT>
<COMPONENT ID="C7" ACTION="H.261Encoder">
<PIN ID="P17" DIRECTION="INPUT" LINK="C6" />
<PIN ID="P18" DIRECTION="OUTPUT" LINK="C9" />
</COMPONENT>
<COMPONENT ID="C8" ACTION="DUPLICATOR">
<PIN ID="P22" DIRECTION="INPUT" LINK="C7" />
<PIN ID="P23" DIRECTION="OUTPUT" LINK="M6" />
<PIN ID="P24" DIRECTION="OUTPUT" LINK="M5" />
</COMPONENT >
<COMPONENT ID="C9" ACTION="DUPLICATOR">
<PIN ID="P22" DIRECTION="INPUT" LINK="C7" />
<PIN ID="P23" DIRECTION="OUTPUT" LINK="M6" />
<PIN ID="P24" DIRECTION="OUTPUT" LINK="M5" />
</COMPONENT >
</PROCESS>
</APS>

Fig. 7. APSL specification for VIC/VVP videoconferencing adaptation.

5 Performance Evaluation

We evaluated the benefits of dynamic video content adaptations for the performance
of the PDA. Evaluation is performed for two application settings:

Table 1. Performance of the PDA with the VoD application

Format Size Maximum frame
rate (fps)
MPEG1 640*480 3.8
MPEGI1 320%240 9.2
MPEGI1 176*144 214
H.261 176*144 24.5

The video on demand application. A video file is available on a Web server and
accessed from the PDA. The video format is MPEG-1 and the video size is 640%480

Dynamic Configuration of Multimedia Applications 59

(we write it MPEG-1/640%480). The evaluated proxy adaptations respectively convert
the initial stream into MPEG-1/320%240, MPEG-1/176%144 and H.261/176*144. The
video is always encoded at the same frame rate and data rate (25 frames/s, 250
Kbits/s).

The videoconferencing application. It distributes a video stream in H.261-CIF
(352%*288) at 25 frames/s and the best quality factor. The evaluated proxy adaptation
converts 4 initial streams into one mixed H.261-QCIF (176*144) stream with a lower
quality factor (85 %).

30

1 10 19 28 37 46 55 64 73 82 91 100109118127 136145
Time (s)

Frames

Adapted

Unadapted

Fig. 8. Performance of the PDA with VVP application

On Tablel and Fig 8, we observe that the PDA can hardly display a large size video
because it has to decode and resize the video frames to display them. As a PDA does
not have sufficient capacities to perform these operations in real time, frames are
displayed at a very low rate. However, when the size decreases, the frame rate
increases accordingly, in particular for the QCIF size (176x144), which is probably
the best-suited size for handheld devices such as PDAs.

In Tablel, we also observe that the frame rate increases when we change the encoding
format from MPEG to H.261, which decoding is less demanding.

Power Consumption of the PDA

Power consumption on the PDA, i.e., energy consumption, is an important problem
for mobile devices with intrinsic power limitations. Indeed, unlike desktop PCs with
permanent power supply, mobile devices such as PDAs have limited power
autonomy. Several research works have studied the relationship between power
consumption and multimedia applications [7, 21]. Analysis and measurements have
demonstrated existing dependencies with the size, color depth and encoding format of
data. In order to measure the power consumption on the PDA, we used the
notification given by the PDA’s battery driver when the battery level changes by
+10%. We therefore run the multimedia application for a long period (up to one hour)
and measured the average period at which the battery level changes. We performed
these measurements with the VoD application and the proxy adaptations described in
the previous section. The results are given in Table 2.

We observe that power consumption also depends on the video size and its encoding
format. When the proxy is configured to reduce the video size and to use a cheaper
encoding format, displaying the video requires less treatments and consequently it
consumes less energy.

60 S.B. Atallah et al.

Table 2. Power consumption of the PDA with different formats and sizes

Format Size clo(I)los/ouIl;(;)zf)rn
MPEG1 640*480 every 12 minutes
MPEG1 320%240 15 minutes
MPEG1 176*144 19 minutes
H.261 176*144 24 minutes
Network Bandwidth

Proxy adaptations can also be beneficial in order to save network bandwidth. In order
to evaluate this, we used the videoconferencing application and we measured on the
PDA the data bit-rate and the packet loss. Data bit-rate gives the amount of data
transferred on the network. Packet loss can be caused by network congestion or by
PDA’s processor overload. Lost packets due to processor overload are delivered to the
PDA but discarded as they could not be processed in time. These discarded packets
also result in wasted network resources as they are discarded after reaching the PDA.

1000

iy o %
®» 800 v i o~ P -
i 8
Ko} 600 40
[¢] 2 30 AM A
= 400 4 WV vy Y
! g 20
R S i A hee B B
g g" Wt
o 1 10 19 28 37 46 55 64 73 82 911001091 18127136145 112 23 34 45 56 67 78 89 100 111 122 133 144
Time (s) Time (s)
— Adapted Unadapted — Adapted Unadapted

Fig. 9. Impact of adaptation on network traffic

Results are given in Fig 9; in both measurements (data rate and packet loss), the upper
curve corresponds to a transmission without proxy adaptation (i.e. using a multicast
data communication scheme). On the left side of the figure, we observe that the
adapted stream consumes less bandwidth because resizing the video reduces
considerably the amount of data transmitted on the network.

On the right side of the figure, we observe that without adaptation, packets are lost at
a high rate varying between 30 and 50% (due to PDA’s processor overload). This
results in a displayed frame rate lower than 11 frames/s (Fig 9) and thus a poor quality
presentation. With proxy adaptation, packet loss is kept under 10% and frames are
displayed at a rate close to the original.

Dynamic Configuration of Multimedia Applications 61

Performance of the Proxy

The ability of a proxy machine to support one or several sessions which adapt
multimedia streams in real time is a critical issue. To evaluate this, we measured the
processor load on the proxy in function of the number of sessions (Fig 10). Each
session is composed of networking components, an MPEG decoder, a resize
component (from 320%240 to CIF) and an H.261 encoder.

100

s0 " |

E 60 \ ‘ M‘v"'uhv J
10 l WAl
é 20 J"\rv-", e

0

- 2 A R ¥ 8B B R B & E
Time (s) =

Fig. 10. CPU load on the proxy

Results show that a session consumes on the average 13 % (on a PIII 700 Mhz with
256 MB) of the processor CPU resource. Notice here that these results depend on the
number of used codecs, the decoding/encoding formats and the treatments applied to
the video in the session. We consider here a very common adaptation of the VoD
application, i.e. when we adapt a video stream for a PDA (MPEG to H.261
conversion, and resize to 176*%144). We also observe a peak when the proxy creates a
new session. This peak corresponds to the creation and the configuration of the
session. These results seem acceptable as we used a medium range PC to run the
proxy software. In addition, for a large number of clients, the load of the proxy could
be balanced between several machines as proposed in [4].

6 Conclusion and Perspectives

In this paper, we reported on an experiment which consisted in evaluating the benefits
of dynamic content-based adaptations for distributed multimedia applications.
Adaptations are used to face the increasing heterogeneity of today’s distributed
computing environment: heterogeneity of the hardware, the software and the user
preferences. Adaptations are transparently performed on network intermediary nodes
called proxies. Finally, adaptations are dynamically configured according to runtime
constraints, thanks to a component-based middleware. We used DirectShow as an
implementation base layer for conducting this evaluation. lessons learned can be
summarized as follows:

— Proxy-based approach allow an implementation of adaptations without
reconsidering the applications installed on end-user machines. We have
implemented application scenarios that demonstrate this possibility without any
modification on reused software such as Web servers, videoconferencing tools, or
video viewers.

— Dynamically-configured content-based adaptations using APSL provide the
required flexibility to deal with the diversity of environment parameters. Our
application scenarios (Vod and videoconference) experimented in different

62 S.B. Atallah et al.

execution environments (PCs on a LAN, PDAs on a WLAN) demonstrate this
flexibility.

— DirectShow can be extended to provide a well-suited support for dynamic
configuration and reconfiguration of adaptation proxies. Its performance allows
real time adaptation of video contents. We therefore provide a good tradeoff
between flexibility and performance.

We are currently working on the extension of our framework for supporting session

establishment protocols such as SIP [21] or H.323 [12] sessions.

At the moment, proxy configurations have to be programmed using the DirectShow

API. We implemented a configuration manager which dynamically configures the

proxy according to a unique APSL configuration file. However, It would be

interesting to deploy the adaptation process on several sites and use several APSL
files. We made few experiments with dynamic reconfiguration (during execution) of

the proxy according to available network and terminal resources. However, we lack a

deeper evaluation of dynamic reconfiguration of several proxies cooperating to take

into account adaptation. Such experiments would require to integrate a monitoring
service in our framework.

References

1. E. Amir, S. McCanne, Z. Hui. An Application Level Video Gateway. Proc. of ACM

Multimedia95, San Francisco, Nov 1995 .

2. Baldonado, M., Chang, C.-C.K., Gravano, L., Paepcke, A.: The Stanford Digital Library
Metadata Architecture. Int. J. Digit. Libr. 1 (1997) 108-121.

3. L. Bellissard, S. Ben Atallah, F. Boyer, and M. Riveill. Component-Based Programming
and Application Management with Olan. In Proceedings of Workshop on Distributed
Computing Systems, pages 579-595, May 1996.

4. G. Blair, A. Andersen, L. Blair, G. Coulson, and D. S. Gancedo, "Supporting dynamic
QoS management functions in a reflective middleware platform," 1EE Proceedings —
Software, 2000.

5. Microsoft DirectX (version 8.0): Microsoft DirectShow, Online Documentation:
http://msdn.microsoft.com/directx/.

6. A. Fox, S.D. Gribble, Y. Chawathe, E.A. Brewer, and P. Gauthier. Cluster Based
Scalable Network Services. In Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles, October 1997.

7. A. Fox, S.D. Gribble, Y. Chawathe, and E.A. Brewer. Adapting to Network and Client
Variation Using Active Proxies: Lessons and Perspectives. IEEE Personal
Communications, 5(4):10-19, Aug 1998.

8. A.Gordon, A.I Gordon. The COM and COM+ Programming Primer. Prentice Hall,
March 2000.

9. CJ Hughes, J. Srinivasan, and S.V. Adve. Saving Energy with Architectural and
Frequency Adaptations for Multimedia Applications. Proceedings of the 34th
International Symposium on Microarchitecture, Dec 2001.

10. IBM Inc. Internet Transcoding for Universal Access, Sep. 2000.
http://www.research.ibm.com/networked\ data\ systems/transcoding/index.html.

11. ITU-T Recommendation H.261: Video codec for audiovisual services at p x 64 kbit/s.
Geneva, 1990, revised at Helsinki, Mar. 1993.

12. M. Johanson, An RTP to HTTP video gateway. In Proceedings of the Tenth International
World Wide Web Conference, Hong Kong , May 2001.

14.

15.

16.

17.

18.

19.

21.

22.

23.

24.

25.

26.

Dynamic Configuration of Multimedia Applications 63

F. Kon, M. Romdn, P. Liu, J. Mao, T. Yamane, L. C. Magalhdes, R. H. Campbell,
Monitoring, Security, and Dynamic Configuration with the DynamicTAO Reflective
ORB, Proceedings of the IFIP/ACM International Conference on Distributed Systems
Platforms and Open Distributed Processing, Middleware'2000.

F. Kon, R. H. Campbell, K. Nahrstedt, Using Dynamic Configuration to Manage A
Scalable Multimedia Distribution System, Computer Communications, 2000.

J. Magee, J. Kramer, M. Sloman. Constructing Distributed Systems in Conic. IEEE
Transactions on Software Engineering, 15(6):663-675, June 1989

A. Maheshwari, A. Sharma, K Ramamritham et P. Shenoy. TranSquid: Transcoding and
Caching Proxy for Heterogenous E-Commerce Environments, Proceedings of the 12th
IEEE Workshop on Research Issues in Data Engineering (RIDE '02), San Jose,
California, Feb 2002.

S. McCanne and V. Jacobson. VIC: A exible framework for packet video. Proc. of ACM
Multimedia'95, Nov 1995.

S. McCanne, V. Jacobson, M. Vetterli. Receiver-Driven Layered Multicast. In
SigComm'96, Stanford, CA, Aug 1996.

MPEG Movie Player for PocketPC, (http://www.pockettv.com), 2000.

R. Rejaie, H. Yu, Mark Handley, D. Estrin. Multimedia Proxy Caching Mechanism for
Quality Adaptive Streaming Applications in the Internet. Proceedings of the Conference
on Computer Communications (IEEE InfoCom), Mar 2000.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M.
Handley, and E. Schooler, «SIP: session initiation protocol,» RFC 3261, Internet
Engineering Task Force, June 2002.

D. Sisalem, H. Schulzrinne. The loss-delay based adjustment algorithm: A TCPfriendly
adaption scheme. Proc. NOSSDAV'98, Jul 1998.

J. Smith, R. Mohan, C. Li. Transcoding Internet Content for Heterogeneous Client
Devices. IEEE Conference on Circuits and Systems, Monterey, Jun 1998.

M. Hemy and al. MPEG system Streams in Best-Effort Networks. Packte Video'99,
Cagliari, Italy, April 1999.

M.Thorson. VIC viewer for PocketPC, Available Online:
http://www.oncoursetech.com/video/default.htm), Apr 2001.

W. Yuan, K. Nahrstedt, X. Gu. Coordinating Energy-Aware Adaptation of Multimedia
Applications and Hardware Resource. Proceedings of the 9th ACM Multimedia
Multimedia Middleware Workshop), Oct 2001.

	1 Introduction
	2 Related Work
	3 Dynamic Configuration of Adaptation Proxies
	3.1 Proxy Implementation
	3.2 Components
	3.3 Adaptation Sessions
	3.4 APSL: Adaptation Proxy Specification Language
	3.5 Proxy Configuration Architecture

	4 Experiments
	4.1 VoD Scenario: Adaptation for Hardware/Software Capabilities of the PDA
	4.2 Adapting VIC/VVP Videoconferencing Application: Video Stream Mixing and Bandwidth Adaptation
	4.3 APSL Specification for Videoconferencing Adaptation Scenario

	5 Performance Evaluation
	6 Conclusion and Perspectives
	References

