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Abstract. Searching for signatures of fossil or present life in our so-
lar system requires autonomous devices capable of investigating remote
locations with limited assistance from earth. Here, we use an artificial
chemistry model to create spatially complex chemical environments. An
autonomous experimentation technique based on evolutionary compu-
tation is then employed to explore these environments with the aim of
discovering the chemical signature of small patches of biota present in the
simulation space. In the highly abstracted environment considered, au-
tonomous experimentation achieves fair to good predictions for locations
with biological activity. We believe that artificially generated biospheres
will be an important tool for developing the algorithms key to the search
for life on Mars.

1 Life Detecting Machines

A spot of rust on a sheet of steel has much in common with a spot of mold on a
sheet of fabric. Discerning alive matter among dead matter is a challenge even
in our familiar surroundings. The ability to draw this line with some certainty
is a rather recent achievement [1]. The U.S. National Aeronautics and Space
Administration outlined a program to detect signs of fossil or present life within
our solar system and beyond [2]. Crucial to this endeavor is the capability of
recognizing life in whatever form it may take:

“A strategy is needed for recognizing novel biosignatures. [. . . ] For ex-

ample, certain examples of our biosphere’s specific molecular machinery, e.g.,

DNA and proteins might not necessarily be mimicked by other examples of

life elsewhere in the cosmos. On the other hand, basic principles of biological

evolution might indeed be universal.” [2, p. 19]

This broad conception of biota was inherent in artificial life research from its
very onset; in Langton’s words:



“[. . . ] certainly, the dynamic processes that constitute life—in whatever

material bases they might occur—must share certain universal features—features

that will allow us to recognize life by its dynamic form, without reference to

its matter.” [3, p. 2]

He went on to point to the usefulness of synthetic life to provide context for the
known forms of life. Thus artificial life would substitute for the lack of samples of
life forms based on other materials. At the time, biologists may have dismissed
the need for a context as broad as Langton envisioned. But when it comes to
the quest of searching real life beyond the scope of our immediate environment,
a narrow perspective on biology may in fact preclude the discovery of those life
forms that would allow us to strengthen our as of yet weak notion of what really
constitutes life. Accordingly, the abstraction artificial life aims at can make a
significant contribution to the recognition of unknown life forms.

In the following, we report on the application of artificial chemistry model-
ing [4] to evaluate an autonomous experimentation technique with regard to its
capability to detect chemical signatures of life.

1.1 Autonomous Experimentation

The search for signs of extraterrestrial biota is characterized by vast, hard to ac-
cess areas and severe restrictions on communication bandwidth. Instrumentation
with a high degree of automation is required. Autonomous experimentation uti-
lizes computational discovery methods [5, 6] to orchestrate the available sensor
resources. In contrast to the majority of machine discovery algorithms that op-
erate on a fixed dataset, autonomous experimentation goes beyond data analysis
and include the experiments itself in the discovery process [7, 8]. Kulkarni and
Simon [9] demonstrated that an algorithm can successfully emulate the interplay
of adjusting hypotheses and modifying experiments characteristic of human ex-
perimenters [10]. The integration of such algorithms into space probes [11] and
planetary rovers [12] is key to the search for life beyond earth.

Here we employ an autonomous experimentation technique based on evolu-
tionary computation. This technique, named scouting, has initially been devel-
oped to characterize protein response with regard to chemical signals [13]. Fig-
ure 1 illustrates its operation. The control computer simulates an evolutionary
population. Each genome in the population represents a specification of experi-
mental conditions (labeled x in Fig. 1). The first step toward the evaluation of
the fitness of a genome is the generation of a prediction r′ for the outcome of the
experiment specified by the genome under consideration. This prediction is based
on a database of experiences in which the observations from all experiments that
have been conducted up to this point are stored. Subsequently the experiment
specified by the genome is actually performed and provides an observation r for
an experiment conducted under conditions x. The more r deviates from what
was expected for such an experiment (i.e., r′), the larger the fitness value that
is assigned to the genome that specified the experiment. In other words, speci-
fying experiments that yield a lot of information is rewarded. As a consequence
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Fig. 1. Scouting combines the notion of information being equivalent to surprise value
[14] with evolutionary computation [15] for autonomous exploration. See text for details

the next generation of the population in the evolutionary process will focus its
attention on parameter combinations in the vicinity of the conditions that gave
rise to the surprising experimental result.

The scouting method has been applied in wet-lab experiments in conjunc-
tion with a computer controlled fluidics system to autonomously investigate the
response of the enzyme malate dehydrogenase to ion signals [16]. In this domain
the scouting algorithm focuses measurements on areas of the parameter space
that show unusual phenomena. However, the parameters set by the algorithm
can also be spatial coordinates, in which case parameter space and real space
coincide. The algorithm then probes the space for unusual observations.

The selection of measurement locations is of particular interest for instru-
ments that can be applied locally only. Multi-touch surface sampling with altitude-
controlled Montgolfiere balloons and air-born laser spectroscopy are examples.
It is in this context that the artificial life simulation described in the next section
provides a test scenario for autonomous experimentation.

2 Simulation of an Artificial Planetary Sphere

To create a test scenario for the study of the behavior of the scouting algorithm
we simulated an abstract artificial planetary sphere with an inanimate chem-
istry that can be perturbed by locally introduced life forms. The assumption
here is that life necessitates the synthesis of a larger variety of substances than
commonly produced by inorganic reactions.

For simulating spatially inhomogeneous chemistry a two-dimensional cellu-
lar automata implementation of the chemical dynamics is convenient [17]. We
employed an asynchronously updated, probabilistic variant in which the state of
a cell represents a chemical component present at the location of the cell. All

rules take the form A+B
p−→ C+D. If component B is present within the set

of four (von Neumann) neighbors of component A, then A may be substituted



by C and B substituted by D. The probability for this event to take place is
proportional to p. In principle the states of the cells could represent a complex
local chemical composition; for simplicity we use the abstraction of a single sub-
stance. Note that the defined order of substitution in the rules enables diffusion
to be expressed by sets of rules of the form A + B

p−→ B +A.

2.1 The Chemical Model

As the basis for our model we selected a randomly created artificial chemistry
for which all modes of organization (see next section) are known [18]. In this
abstraction of molecular interaction, substances are created by the cooperative
action of two catalytically acting substances. This was motivated by biopolymer
synthesis and entails the assumption of an inexhaustible pool of building blocks
being available. In contrast, the present model does take substrates explicitly into

account, such that all reactions are of the form X
(E,F)−→ Y, where X is a substrate

molecule, E and F are co-acting catalysts and Y is the reaction product. To
realize reactions in which a substrate, a product, and two catalysts participate
with the binary reaction scheme of the cellular automata, intermediate agents
have been introduced for each reaction. This is in agreement with real chemistry,
where elementary steps are assumed to be predominantly binary and at most
ternary. Thus, above reaction would be represented in the cellular automata by
two rules:

E + F
p1−→ E + I, (1)

X + I
p2−→ Y+ F. (2)

The intermediate agent I is assumed to be highly reactive and leads to a
rapid transformation of substrate X to product Y, i.e., p1 ¿ p2. Any one of a set
of three arbitrarily selected special substances {0, 6, 7} can serve as substrate.
Figure 2A shows the reaction network taken from [18]. Note that the reaction
matrix is asymmetric, which effectively corresponds to the possibility of two
products being catalyzed by the cooperative action of the two catalysts.

For the present purpose the reaction network shown in Fig. 2A was aug-
mented by decay reactions that transform any substance other than intermedi-

ates into the substrate substances through rules of the form A + B
p−→ X+ B,

where A ∈ {0, 1, . . . , 9},X ∈ {0, 6, 7} and B can take any value. Decay reactions
for all but substance 1 have a probability of 0.075%. Substance 1 is instable and
decays with the normal reaction probability of 0.75%. The probability for diffu-
sion is 25%. Finally, an additional catalyst, number 10, was introduced as biota.
It consumes the substrate molecules {0,6,7} and excretes the instable substance
1. All substances, but not the biota had the ability to diffuse. The resulting re-
action network, illustrated in Fig. 2C, was simulated with the cellular automata.

2.2 Simulation of Spatial Chemical Composition

A cellular automata implementation of the model described above was run in
a bounded simulation space of 200×200 cells. This space was initialized with a
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Fig. 2. (A) The network of potential reactions. Numbers in the leftmost column refer to
substances that take the place of E in equation 1, numbers in the top row correspond
to F in equations 1 and 2, and entries in the table correspond to Y in equation 2.
Substances that can serve as substrates are marked with bold face. (B) Snapshot of the
states of the 200×200 cell automaton after 108 individual updates. The different shades
indicate cell states corresponding to different chemical compositions. All intermediate
products are mapped to the same shade. (C) The reaction network used to model the
planetary sphere. Numbered boxes represent the substances. The diamond shape (10)
indicates the biota’s interaction with its chemical environment. Reactions are shown
as tiny nodes; for clarity the 123 fast intermediate reactions are not shown

pseudo-random distribution3 of four of the ten substances, namely {0, 6, 7, 9}.
These four substances form a closed and self-maintaining reaction system. In
other words, they do not catalyze the production of any substance not present
in the system (property of closure) and every substance is catalytically produced
within the reaction system (property of self-maintenance). A reaction system
that is closed and self-maintaining is called organization [19, 20]. The chemical

3 For our simulations, we initialized always: 12762 cells with substance 0, 12556 cells
with substance 6, 13419 cells with substance 7, and 1263 with substance 9.



organization of the reaction system may change if it is perturbed by the intro-
duction of new chemical species, such as substance 1 excreted by the biota. For
all simulations in which the biota was present, exactly six cells where set to the
biota state.

Diffusion rules (A+B
pD−→ B+A with pD = 0.25%), here an abstraction of all

transport phenomena, were implemented for all substances but not for the biota.
The total number of rules, including diffusion rules for all substance combinations
(inclusive intermediate substances) is 2873. To update the simulation space a cell
and one of its von Neumann neighbors are pseudo-randomly selected. The subset
of rules applicable to the two chemical components located in the two cells is
determined and in accordance with their probabilities one of these rules may be
applied to transform the content of the cells. Figure 2B indicates the distribution
of chemical compounds in the simulation space after an average number of 2500
updates per cell. The grey level distribution is indicative of the complexity of
spatial distribution of substances. The chemical composition of local areas in
the simulation space shows considerable fluctuation. It provides a rich testbed
for the scouting algorithm because in general no accurate prediction of the local
chemical composition is possible. The dynamics of the artificial chemistry model
was simulated and snapshots of the cellular automata state, such as depicted in
Fig. 2B, were saved during the run to serve as input for the scouting algorithm.

3 Scouting Experiments

In the experiments described here the scouting algorithm is applied to detect
unusual chemical signatures in a complex background chemistry [21]. It is as-
sumed that the chemical composition can be sampled locally, but no a priori
knowledge of the chemical effects of potentially present biota is available to the
algorithm. For sampling the algorithm has to choose a location x = (x, y) in the
simulation space. The measured data at this location is a vector r = (r1, . . . , rn)
containing for each of the n substances the fraction of cells in a ±2 pixel vicinity
that hold this substance. Correspondingly the entries (x, r) in the experience
database and the expectations (x, r′) formed for a location prior to its sampling
are such vectors (cf. Fig. 1). The surprise value d, which constitutes the fitness
criterion, is computed as the Shannon entropy [14] of the difference between the
actual response r and response that was expected r′. The expectation r′ for a
location x = (x, y) is computed as distance-weighted average over the (up to) 25
measurements nearest to x available in the experience database. A population
size of 10 genomes, all offspring of the single best parent was used for evolution
(i.e., a (1, 10)-strategy [15]). We mutate an offspring by adding an equally dis-
tributed random number taken from within a radius of δ. The mutation strength
δ depends on the previous surprise

d(r, r′) = −
n

∑

i=1

|ri−r′i| ln |ri−r′i|, δ =















0.03 if
√
4.2 ≤d(r,r’),

0.04 if 2.0 ≤d(r,r’)<
√
4.2,

0.1 if
√
3.5 ≤d(r,r’)< 2.0,

0.99 else .

(3)



In the scouting algorithm applied for the experiments described below, these pa-
rameters have been established empirically and kept constant for all experiments.
Methods to adapt the mutation strength dynamically during the sampling are
under development. It should be noted that due to the highly dynamic fitness
landscape, adaptation methods commonly used in evolutionary computation do
not perform well in scouting (unpublished results).

Simulations were conducted for four situations, one patch with biota (6 cells),
two (2 × 3 cells), and three patches with biota (3 × 2 cells). After 108 updates
(2500 updates per cell) of the cellular automata a snapshot of the distribution
of chemicals in the simulation space was saved.

Scouting experiments were run on these snapshots to sample 800 locations
in the simulation space. Figure 3 shows the probed locations in the left column.
Their density indicates areas of high interest to the scouting algorithm. We used
hierarchical clustering with subsequent expectation maximization (performed
with mclust in R [22, 23]) to automatically identify clusters in the sampling
positions. The number of clusters identified during expectation maximization
can be seen in the middle column as peaks of the Bayesian information criterion.
We used the samples allocated to a cluster (shown in Fig. 3 only for the case of
three biota patches: panel J) and calculated their mean position as prediction
for the location of biota in the simulation space. These predicted positions are
marked with + in panels C, F and I. If the scouting is repeated with an alternate
seed value for its random generator, the evolution of the sampling positions will
take a different course; predictions from four additional runs are marked with
for comparison. The localization is fairly good, despite the complex chemical
background (panel D, for example, shows the scouting of Fig. 2B).

Detection of the biota is possible with considerably less than the 800 samples
used in Fig. 3, albeit with false positives and less accuracy. In Fig. 4 bars repre-
sent clusters, the solid bars correspond to clusters at biota patches, striped bars
are clusters close to the correct location and white bars are false positives. The
top graph (I) shows an experiment with a single biota patch that is detected
with less than 100 samples and located with 300 samples. The middle graph (II)
shows scouting with two biota patches, more samples are needed to find both
locations. With three biota patches (graph III) one is detected early, but several
false positives appear and one of the three patches is only approximately located
(striped bar) with 800 samples.

4 Concluding Remarks

We have applied an autonomous experimentation technique for the search of
unusual chemical signatures in a complex environment. Scouting was able to
consistently detect biota signatures without any domain knowledge regarding
the chemistry of the environment or the biota. This performance of course has
to be seen in the light of the relative small search space and the highly abstracted
environment applied here.
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Fig. 3. Detection of an unusual chemical composition. Actual location of biota (◦) and
the 800 locations (·) probed by scouting, are shown for 1, 2, 3, and 0 biota patches in
(A, D, G, K). By clustering the biota can be localized, marked + (and for additional
scouting runs) in C, F, I. In J the allocation of sample positions to clusters is shown for
the case of three biota patches. A run without biota (K, L) does not lead to clusters.
For clarity symbols for biota and cluster centers have been enlarged but refer to only
one point in the plane. See text
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Fig. 4. Development of clusters for one, two and three biota patches (I, II, III). Clus-
tering was performed every 50 samples, solid bars represent correctly localized biota,
white bars false positives; see text for details

The path to algorithms that confidently can be intrusted with the search of
life in remote locations of our solar system is still long. We belive that the broad
variety of artificial life is an important resource to draw on for test scenarios
during the development of such algorithms.
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