Abstract
This paper reinvestigates the satisfiability problem and the issue of completeness for Propositional Dynamic Logic with Converse. By giving a game-theoretic characterisation of its satisfiability problem using focus games, an axiom system that is extracted from these games can easily be proved to be complete.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM 28(1), 114–133 (1981)
Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of Computer and System Sciences 18(2), 194–211 (1979)
de Giacomo, G., Massacci, F.: Combining deduction and model checking into tableaux and algorithms for Converse-PDL. Information and Computation 162, 117–137 (2000)
Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)
Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL (note). TCS 14, 113–118 (1981)
Lange, M., Stirling, C.: Model checking games for CTL∗. In: Proc. Conf. on Temporal Logic, ICTL 2000, Leipzig, Germany, pp. 115–125 (2000)
Lange, M., Stirling, C.: Focus games for satisfiability and completeness of temporal logic. In: Proc. 16th Symp. on Logic in Computer Science, LICS 2001, Boston, MA, USA, IEEE, Los Alamitos (2001)
Pratt, V.R.: A practical decision method for propositional dynamic logic. In: Proc. 10th Symp. on Theory of Computing, STOC 1978, San Diego, California, pp. 326–337 (May 1978)
Pratt, V.R.: Models of program logics. In: Proc. 20th Symp. on Foundations of Computer Science, FOCS 1979, pp. 115–122. IEEE, Los Alamitos (1979)
Segerberg, K.: A completeness theorem in the modal logic of programs. Notices of the AMS 24(6), A–552 (1977)
Stirling, C.: Modal and temporal logics. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Background: Computational Structures. Handbook of Logic in Computer Science, vol. 2, pp. 477–563. Clarendon Press, Oxford (1992)
Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable. Information and Control 54(1/2), 121–141 (1982)
Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logic of programs. Journal of Computer and System Sciences 32, 183–221 (1986)
Woods, W.A., Schmolze, J.G.: The kl-one family. In: Lehmann, F. (ed.) Semantic Networks in Artificial Intelligence, pp. 133–177. Pergamon Press, Oxford (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lange, M. (2003). Satisfiability and Completeness of Converse-PDL Replayed. In: Günter, A., Kruse, R., Neumann, B. (eds) KI 2003: Advances in Artificial Intelligence. KI 2003. Lecture Notes in Computer Science(), vol 2821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39451-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-39451-8_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20059-8
Online ISBN: 978-3-540-39451-8
eBook Packages: Springer Book Archive