Skip to main content

Validation of Fuzzy Partitions Obtained through Fuzzy C-Means Clustering

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2871))

Included in the following conference series:

  • 593 Accesses

Abstract

A new cluster validity index is proposed to determine the optimal number of clusters for fuzzy partitions obtained from the fuzzy c-means algorithm. The proposed validity index exploits an overlap measure and a separation measure between clusters. A good fuzzy partition is expected to have a low degree of overlap and a larger separation distance. Testing of the proposed index on well-known data sets showed its superior effectiveness and reliability in comparison to other indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    MATH  Google Scholar 

  2. Bezdek, J.C., et al.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academy Publishers, Boston (1999)

    MATH  Google Scholar 

  3. Bezdek, J.C.: Numerical taxonomy with fuzzy sets. J. Math. Biology 1, 57–71 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bezdek, J.C.: Cluster validity with fuzzy stes. J. Cybernit. 3, 58–72 (1974)

    Article  MathSciNet  Google Scholar 

  5. Pal, N.R., Bezdek, J.C.: On cluster validity for the fuzzy c-means model. IEEE Trans. on Fuzzy Systems 3, 370–379 (1995)

    Article  Google Scholar 

  6. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 841–847 (1991)

    Article  Google Scholar 

  7. Fukuyama, Y., Sugeno, M.: A new method of choosing the number of clusters for the fuzzy c-means method. In: Proceedings of 5th Fuzzy Systems Symposium, pp. 247–250 (1989)

    Google Scholar 

  8. Kwon, S.H.: Cluster validity index for fuzzy clustering. Electronics Letters 34, 2176–2177 (1998)

    Article  Google Scholar 

  9. Rezaee, M.R., Lelieveldt, B.P.F., Reiber, J.H.C.: A new cluster validity index for the fuzzy c-mean. Pattern Recognition Letters 19, 237–246 (1998)

    Article  MATH  Google Scholar 

  10. Boudraa, A.O.: Dynamic estimation of number of clusters in data sets. Electronics Letters 35, 1606–1607 (1999)

    Article  Google Scholar 

  11. Bensaid, A.M., et al.: Validity-guided (re)clustering with applications to image segmentation. IEEE Trans. on Fuzzy Systems 4, 112–123 (1996)

    Article  Google Scholar 

  12. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics 28, 301–315 (1998)

    Article  Google Scholar 

  13. Lee-Kwang, H., Song, Y.S., Lee, K.M.: Similarity measure between fuzzy sets and between elements. Fuzzy Sets and Systems 62, 291–293 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, DW., Lee, K.H. (2003). Validation of Fuzzy Partitions Obtained through Fuzzy C-Means Clustering. In: Zhong, N., RaÅ›, Z.W., Tsumoto, S., Suzuki, E. (eds) Foundations of Intelligent Systems. ISMIS 2003. Lecture Notes in Computer Science(), vol 2871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39592-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39592-8_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20256-1

  • Online ISBN: 978-3-540-39592-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics