Skip to main content

Smoothed Motion Complexity

  • Conference paper
Algorithms - ESA 2003 (ESA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2832))

Included in the following conference series:

Abstract

We propose a new complexity measure for movement of objects, the smoothed motion complexity. Many applications are based on algorithms dealing with moving objects, but usually data of moving objects is inherently noisy due to measurement errors. Smoothed motion complexity considers this imprecise information and uses smoothed analysis [13] to model noisy data. The input is object to slight random perturbation and the smoothed complexity is the worst case expected complexity over all inputs w.r.t. the random noise. We think that the usually applied worst case analysis of algorithms dealing with moving objects, e.g., kinetic data structures, often does not reflect the real world behavior and that smoothed motion complexity is much better suited to estimate dynamics.

We illustrate this approach on the problem of maintaining an orthogonal bounding box of a set of n points in ℝ d under linear motion. We assume speed vectors and initial positions from [-1,1]d. The motion complexity is then the number of combinatorial changes to the description of the bounding box. Under perturbation with Gaussian normal noise of deviation σ the smoothed motion complexity is only polylogarithmic: O(d ·(1 + 1/σ) ·log n 3/2) and \(\Omega (d \cdot \sqrt{log n})\). We also consider the case when only very little information about the noise distribution is known. We assume that the density function is monotonically increasing on ℝ ≤ 0 and monotonically decreasing on ℝ ≥ 0 and bounded by some value C. Then the motion complexity is \(O(\sqrt{n log n \cdot C} + log n)\) and \(\Omega (d \cdot min\{\sqrt[5]{n}/\sigma , n\})\).

The third and the fifth author are partially supported by DFG-Sonderforschungsbereich 376, DFG grant 872/8-1, and the Future and Emerging Technologies program of the EU under contract number IST-1999-14186 (ALCOM-FT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P., Har-Peled, S.: Maintaining approximate extent measures of moving points. In: Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 148–157 (2001)

    Google Scholar 

  2. Banderier, C., Mehlhorn, K., Beier, R.: Smoothed analysis of three combinatorial problems (2002) (manuscript)

    Google Scholar 

  3. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. In: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 82–91 (1999)

    Google Scholar 

  4. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. Journal of Algorithms 31(1), 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Basch, J., Guibas, L.J., Zhang, L.: Proximity problems on moving points. In: Proceedings of the 13th Annual ACM Symposium on Computational Geometry, pp. 344–351 (1997)

    Google Scholar 

  6. Blum, A., Dunagan, J.: Smoothed analysis of the perceptron algorithm. In: Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 905–914 (2002)

    Google Scholar 

  7. Guibas, L.J., Hershberger, J., Suri, S., Zhang, L.: Kinetic connectivity for unit disks. Discrete & Computational Geometry 25(4), 591–610 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Har-Peled, S.: Clustering motion. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 84–93 (2001)

    Google Scholar 

  9. Hershberger, J., Suri, S.: Simplified kinetic connectivity for rectangles and hypercubes. In: Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 158–167 (2001)

    Google Scholar 

  10. Kirkpatrick, D., Snoeyink, J., Speckmann, B.: Kinetic collision detection for simple polygons. International Journal of Computational Geometry and Applications 12(1-2), 3–27 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten. Zentralblatt für Wahrscheinlichkeitstheorie und verwandte Gebiete 2, 75–84 (1963)

    Article  MATH  Google Scholar 

  12. Sankar, A., Spielman, D., Teng, S.: Smoothed analysis of the condition numbers and growth factors of matrices (2002) (manuscript)

    Google Scholar 

  13. Spielman, D., Teng, S.: Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time. In: Proceedings of the 33rd ACM Symposium on Theory of Computing (STOC), pp. 296–305 (2001)

    Google Scholar 

  14. Spielman, D., Teng, S.: Smoothed analysis of property testing (2002) (manuscript)

    Google Scholar 

  15. Zhang, L., Devarajan, H., Basch, J., Indyk, P.: Probabilistic analysis for combinatorial functions of moving points. In: Proceedings of the 13th Annual ACM Symposium on Computational Geometry, pp. 442–444 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damerow, V., Meyer auf der Heide, F., Räcke, H., Scheideler, C., Sohler, C. (2003). Smoothed Motion Complexity. In: Di Battista, G., Zwick, U. (eds) Algorithms - ESA 2003. ESA 2003. Lecture Notes in Computer Science, vol 2832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39658-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39658-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20064-2

  • Online ISBN: 978-3-540-39658-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics