Abstract
The stable marriage problem has recently been studied in its general setting, where both ties and incomplete lists are allowed. It is NP-hard to find a stable matching of maximum size, while any stable matching is a maximal matching and thus trivially a factor two approximation.
In this paper, we give the first nontrivial result for approximation of factor less than two. Our algorithm achieves an approximation ratio of 2/(1+L − 2) for instances in which only men have ties of length at most L. When both men and women are allowed to have ties, we show a ratio of 13/7(< 1.858) for the case when ties are of length two. We also improve the lower bound on the approximation ratio to \(\frac{21}{19}\)(> 1.1052).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bansal, V., Agrawal, A., Malhotra, V.: Stable marriages with multiple partners: efficient search for an optimal solution. In: Proc. ICALP (2003) (to appear)
Dilworth, R.P.: A Decomposition Theorem for Partially Ordered Sets. Ann. Math. 51, 161–166 (1950)
Dinur, I., Safra, S.: The importance of being biased. In: Proc. of 34th STOC, pp. 33–42 (2002)
Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Amer. Math. Monthly 69, 9–15 (1962)
Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete Applied Mathematics 11, 223–232 (1985)
Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Boston (1989)
Halldórsson, M., Irwing, R.W., Iwama, K., Manlove, D.F., Miyazaki, S., Morita, Y., Scott, S.: Approximability Results for Stable Marriage Problems with Ties. Theoretical Computer Science (to appear)
Halldórsson, M., Iwama, K., Miyazaki, S., Morita, Y.: Inapproximability results on stable marriage problems. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 554–568. Springer, Heidelberg (2002)
Halldórsson, M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Randomized approximation of the stable marriage problem. In: Proc. COCOON 2003 (2003) (to appear)
Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. In: Proc. 11th SODA, pp. 329–337 (2000)
Irving, R.W.: Stable marriage and indifference. Discrete Applied Mathematics 48, 261–272 (1994)
Irving, R.W.: Matching medical students to pairs of hospitals: a new variation on an old theme. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 381–392. Springer, Heidelberg (1998)
Irving, R.W., Manlove, D.F., Scott, S.: Strong Stability in the Hospitals/Residents Problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 439–450. Springer, Heidelberg (2003)
Iwama, K., Manlove, D., Miyazaki, S., Morita, Y.: Stable marriage with incomplete lists and ties. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999)
Manlove, D., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theoretical Computer Science 276(1-2), 261–279 (2002)
Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm for the vertex cover problem. Acta Inf. 22, 115–123 (1985)
Nemhauser, G.L., Trotter, L.E.: Vertex packing: structural properties and algorithms. Mathematical Programming 8, 232–248 (1975)
Teo, C.P., Sethuraman, J.V., Tan, W.P.: Gale-Shapley Stable Marriage Problem Revisited: Strategic Issues and Applications. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 429–438. Springer, Heidelberg (1999)
Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38, 364–372 (1980)
Zito, M.: Small maximal matchings in random graphs. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 18–27. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H. (2003). Improved Approximation of the Stable Marriage Problem. In: Di Battista, G., Zwick, U. (eds) Algorithms - ESA 2003. ESA 2003. Lecture Notes in Computer Science, vol 2832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39658-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-39658-1_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20064-2
Online ISBN: 978-3-540-39658-1
eBook Packages: Springer Book Archive