Skip to main content

Improved Bounds for Finger Search on a RAM

  • Conference paper
Algorithms - ESA 2003 (ESA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2832))

Included in the following conference series:

Abstract

We present a new finger search tree with O(1) worst-case update time and O(log log d) expected search time with high probability in the Random Access Machine (RAM) model of computation for a large class of input distributions. The parameter d represents the number of elements (distance) between the search element and an element pointed to by a finger, in a finger search tree that stores n elements. For the need of the analysis we model the updates by a “balls and bins” combinatorial game that is interesting in its own right as it involves insertions and deletions of balls according to an unknown distribution.

This work was partially supported by the IST Programme of EU under contract no. IST-1999-14186 (ALCOM-FT), by the Human Potential Programme of EU under contract no. HPRN-CT-1999-00104 (AMORE), and by the Carathéodory project of the University of Patras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersson, A., Mattson, C.: Dynamic Interpolation Search in o(log log n) Time. In: Proc. ICALP 1993 (1993)

    Google Scholar 

  2. Anderson, A., Thorup, M.: Tight(er) Worst-case Bounds on Dynamic Searching and Priority Queues. In: Proc. 32nd ACM Symposium on Theory of Computing – STOC 2001, pp. 335–342. ACM, New York (2000)

    Chapter  Google Scholar 

  3. Cole, R., Frieze, A., Maggs, B., Mitzenmacher, M., Richa, A., Sitaraman, R., Upfal, E.: On Balls and Bins with Deletions. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 145–158. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W Function. Advances in Computational Mathematics 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dietz, P., Raman, R.: A Constant Update Time Finger Search Tree. Information Processing Letters 52, 147–154 (1994)

    Article  MATH  Google Scholar 

  6. Frederickson, G.: Implicit Data Structures for the Dictionary Problem. Journal of the ACM 30(1), 80–94 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gonnet, G., Rogers, L., George, J.: An Algorithmic and Complexity Analysis of Interpolation Search. Acta Informatica 13(1), 39–52 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Itai, A., Konheim, A., Rodeh, M.: A Sparse Table Implementation of Priority Queues. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 417–431. Springer, Heidelberg (1981)

    Google Scholar 

  9. Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.: Improved Bounds for Finger Search on a RAM. Tech. Report TR-2003/07/01, Computer Technology Institute, Patras (July 2003)

    Google Scholar 

  10. Knuth, D.E.: Deletions that preserve randomness. IEEE Trans. Softw. Eng. 3, 351–359 (1977)

    Article  MathSciNet  Google Scholar 

  11. Levcopoulos, C., Overmars, M.H.: A Balanced Search Tree with O(1) Worst Case Update Time. Acta Informatica 26, 269–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mehlhorn, K., Tsakalidis, A.: Data Structures. In: Handbook of Theoretical Computer Science. Algorithms and Complexity, vol. I, ch. 6, pp. 303–341. The MIT Press, Cambridge (1990)

    Google Scholar 

  13. Mehlhorn, K., Tsakalidis, A.: Dynamic Interpolation Search. Journal of the ACM 40(3), 621–634 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Overmars, M., Leeuwen, J.: Worst Case Optimal Insertion and Deletion Methods for Decomposable Searching Problems. Information Processing Letters 12(4), 168–173

    Google Scholar 

  15. Pearl, Y., Itai, A., Avni, H.: Interpolation Search – A log log N Search. Communications of the ACM 21(7), 550–554 (1978)

    Article  Google Scholar 

  16. Peterson, W.W.: Addressing for Random Storage. IBM Journal of Research and Development 1(4), 130–146 (1957)

    Article  Google Scholar 

  17. Willard, D.E.: Searching Unindexed and Nonuniformly Generated Files in log log N Time. SIAM Journal of Computing 14(4), 1013–1029 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Willard, D.E.: Applications of the Fusion Tree Method to Computational Geometry and Searching. In: Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms – SODA 1992, pp. 286–295 (1992)

    Google Scholar 

  19. Yao, A.C., Yao, F.F.: The Complexity of Searching an Ordered Random Table. In: Proc. 17th IEEE Symp. on Foundations of Computer Science – FOCS 1976, pp. 173–177 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C. (2003). Improved Bounds for Finger Search on a RAM. In: Di Battista, G., Zwick, U. (eds) Algorithms - ESA 2003. ESA 2003. Lecture Notes in Computer Science, vol 2832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39658-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39658-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20064-2

  • Online ISBN: 978-3-540-39658-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics