Skip to main content

Fast Smallest-Enclosing-Ball Computation in High Dimensions

  • Conference paper
Algorithms - ESA 2003 (ESA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2832))

Included in the following conference series:

Abstract

We develop a simple combinatorial algorithm for computing the smallest enclosing ball of a set of points in high dimensional Euclidean space. The resulting code is in most cases faster (sometimes significantly) than recent dedicated methods that only deliver approximate results, and it beats off-the-shelf solutions, based e.g. on quadratic programming solvers. The algorithm resembles the simplex algorithm for linear programming; it comes with a Bland-type rule to avoid cycling in presence of degeneracies and it typically requires very few iterations. We provide a fast and robust floating-point implementation whose efficiency is based on a new dynamic data structure for maintaining intermediate solutions.

The code can efficiently handle point sets in dimensions up to 2,000, and it solves instances of dimension 10,000 within hours. In low dimensions, the algorithm can keep up with the fastest computational geometry codes that are available.

Partly supported by the IST Programme of the EU and the Swiss Federal Office for Education and Science as a Shared-cost RTD (FET Open) Project under Contract No IST-2000-26473 (ECG – Effective Computational Geometry for Curves and Surfaces).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Megiddo, N.: Linear-time algorithms for linear programming in R3 and related problems. SIAM J. Comput. 12, 759–776 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dyer, M.E.: A class of convex programs with applications to computational geometry. In: Proc. 8th Annu. ACM Sympos. Comput. Geom., pp. 9–15 (1992)

    Google Scholar 

  3. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  4. Gärtner, B.: Fast and robust smallest enclosing balls. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 325–338. Springer, Heidelberg (1999)

    Google Scholar 

  5. Gärtner, B., Schönherr, S.: An efficient, exact, and generic quadratic programming solver for geometric optimization. In: Proc. 16th Annu. ACM Sympos. Comput. Geom, pp. 110–118 (2000)

    Google Scholar 

  6. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support vector clustering. Journal of Machine Learning Research 2, 125–137 (2001)

    Article  Google Scholar 

  7. Bulatov, Y., Jambawalikar, S., Kumar, P., Sethia, S.: Hand recognition using geometric classifiers. In: Abstract of presentation for the DIMACS Workshop on Computational Geometry. Rutgers University (2002)

    Google Scholar 

  8. Goel, A., Indyk, P., Varadarajan, K.R.: Reductions among high dimensional proximity problems. In: Symposium on Discrete Algorithms, pp. 769–778 (2001)

    Google Scholar 

  9. Kumar, P., Mitchell, J.S.B., Yıldırım, E.A.: Computing core-sets and approximate smallest enclosing hyperspheres in high dimensions. In: To appear in the Proceedings of ALENEX 2003 (2003)

    Google Scholar 

  10. ILOG, Inc.: ILOG CPLEX 6.5 user’s manual (1999)

    Google Scholar 

  11. Zhou, G., Toh, K.C., Sun, J.: Efficient algorithms for the smallest enclosing ball problem (2002) (manuscript)

    Google Scholar 

  12. Hopp, T.H., Reeve, C.P.: An algorithm for computing the minimum covering sphere in any dimension. Technical Report NISTIR 5831, National Institute of Standards and Technology (1996)

    Google Scholar 

  13. Chvátal, V.: Linear programming. W. H. Freeman, New York (1983)

    MATH  Google Scholar 

  14. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, K., Gärtner, B., Kutz, M. (2003). Fast Smallest-Enclosing-Ball Computation in High Dimensions. In: Di Battista, G., Zwick, U. (eds) Algorithms - ESA 2003. ESA 2003. Lecture Notes in Computer Science, vol 2832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39658-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39658-1_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20064-2

  • Online ISBN: 978-3-540-39658-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics