
On Approximating A Geometric Prize-Collecting Traveling

Salesman Problem With Time Windows∗

Reuven Bar-Yehuda† Guy Even‡ Shimon (Moni) Shahar§

November 6, 2003

Abstract

We study a scheduling problem in which jobs have locations. For example, consider a
repairman that is supposed to visit customers at their homes. Each customer is given a time
window during which the repairman is allowed to arrive. The goal is to find a schedule that
visits as many homes as possible. We refer to this problem as the Prize-Collecting Traveling
Salesman Problem with time windows (TW-TSP).

We consider two versions of TW-TSP. In the first version, jobs are located on a line, have
release times and deadlines but no processing times. We present a geometric interpretation of
TW-TSP on a line that generalizes the longest monotone subsequence problem. We present
an O(log n) approximation algorithm for this case, where n denotes the number of jobs. This
algorithm can be extended to deal with non-unit job profits.

The second version deals with a general case of asymmetric distances between locations.
We define a density parameter that, loosely speaking, bounds the number of zig-zags between
locations within a time window. We present a dynamic programming algorithm that finds a
tour that visits at least OPT/density locations during their time windows. This algorithm can
be extended to deal with non-unit job profits and processing times.

∗An extended abstract of this paper appeared in 11th Annual European Symposium on Algorithms, Lecture Notes

in Computer Science Volume 2832, pp. 55 - 66, Springer-Verlag, Sept. 2003.
†Computer Science Dept., Technion, Haifa 32000, Israel. E-mail:reuven@cs.technion.ac.il.
‡Dept. of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel. E-mail:guy@eng.tau.ac.il.
§Dept. of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel. E-mail:moni@eng.tau.ac.il.

1

1 Introduction

We study a scheduling problem in which jobs have locations. For example, consider a repairman
that is supposed to visit customers at their homes. Each customer is given a time window during
which the repairman is allowed to arrive. The goal is to find a schedule that visits as many homes
as possible. We refer to this problem as the Prize-Collecting Traveling Salesman Problem with time
windows (TW-TSP).

Previous Work. The goal in previous works on scheduling with locations differs from the goal
we consider. The goal in previous works is to minimize the makespan (i.e. the completion time
of the last job) or minimize the total waiting time (i.e. the sum of times that elapse from the
release times till jobs are served). Tsitsiklis [T92] considered the special case in which the locations
are on a line. Tsitsiklis proved that verifying the feasibility of instances in which both release
times and deadlines are present is strongly NP-complete. Polynomial algorithms were presented
for the cases of (i) either release times or deadlines, but not both, and (ii) no processing time.
Karuno et. al. [KNI98] considered a single vehicle scheduling problem which is identical to the
problem studied by Tsitsiklis (i.e. locations on a line and minimum makespan). They presented
a 1.5-approximation algorithm for the case without deadlines (processing and release times are
allowed). Karuno and Nagamochi [KN01] considered multiple vehicles on a line. They presented a
2-approximation algorithm for the case without deadlines. Augustine and Seiden [AS02] presented
a PTAS for single and multiple vehicles on trees with a constant number of leaves.

Our results. We consider two versions of TW-TSP. In the first version, TW-TSP on a line, jobs
are located on a line, have release times, deadlines, but no processing times. We present an O(log n)
approximation algorithm for this case, where n denotes the number of jobs. Our algorithm also
handles a weighted case, in which a profit p(v) is gained if location v is visited during its time
window.

The second version deals with a general case of asymmetric distances between locations (asym-
metric TW-TSP). We define a density parameter that, loosely speaking, bounds the number of
zig-zags between locations within a time window. We present a dynamic programming algorithm
that finds a tour that visits at least OPT/density locations during their time windows. This
algorithm can be extended to deal with non-unit profits and processing times.

Techniques. Our approach is motivated by a geometric interpretation. We reduce TW-TSP on
a line to a problem called max-monotone-tour. In max-monotone-tour, the input consists
of a collection of slanted segments in the plane, where the slope of each segment is 45 degrees.
The goal is to find an x-monotone curve starting at the origin that intersects as many segments
as possible. max-monotone-tour generalizes the longest monotone subsequence problem [ES35].
A basic procedure in our algorithms involves the construction of an arc weighted directed acyclic
graph and the computations of a max-weight path in it [F75]. Other techniques include interval
trees and dynamic programming algorithms.

Organization. In Section 2, we formally define TW-TSP. In Section 3, we present approximation
algorithms for TW-TSP on a line. We start with an O(1)-approximation algorithm for the case
of unit time-windows and end with an O(log n)-approximation algorithm. In Section 4 we present
algorithms for the non-metric version of TW-TSP.

1

2 Problem description

We define the Prize-Collecting Traveling Salesman Problem with time-windows (TW-TSP) as fol-
lows. Let (V, `) denote a metric space, where V is a set of points and ` is a metric. The input of a
TW-TSP instance over the metric space (V, `) consists of:

• A subset S ⊆ V of points.

• Each element s ∈ S is assigned a profit p(s), a release time r(s), and deadline d(s).

• A special point v0 ∈ S, called the origin, for which p(v0) = r(v0) = d(v0) = 0.

The points model cities in TSP jargon or jobs in scheduling terminology. The distance `(u, v)
models the amount of time required to travel from u to v. We refer to the interval [(r(v), d(v)] as
the time window of v. We denote the time window of v by Iv.

A tour is a sequence of pairs (vi, ti), where vi ∈ V and ti is an arrival time. (Recall that the point
v0 is the origin.) The feasibility constraints for a tour {(vi, ti)}ki=0 are as follows:

t0 = 0

ti+1 ≥ ti + `(vi, vi+1).

A TW-tour is a tour {(vi, ti)}ki=0 that satisfies the following conditions:

1. The tour is simple (multiplicity of every vertex is one).

2. For every 0 ≤ i ≤ k, vi ∈ S.

3. For every 0 ≤ i ≤ k, ti ∈ Ivi
.

The profit of a TW-tour T = {(vi, ti)}ki=0 is defined as

p(T) =

k
∑

i=0

p(vi).

The goal in TW-TSP is to find a TW-tour with maximum profit.
We refer to TW-tours simply as sequences of points in S without attaching times since we can

derive feasible times that satisfy ti ∈ Ivi
as follows:

t0 = 0

ti = max{ti−1 + `(vi−1, vi), r(vi)}. (1)

One can model multiple jobs residing in the same location (but with different time windows)
by duplicating the point and setting the distance between copies of the same point to zero (hence
the metric becomes a semi-metric).

2

3 TW-TSP on a line

In this section we present approximation algorithms for TW-TSP on a line. TW-TSP on a line
is a special case of TW-TSP in which V =

�
. Namely, the points are on a the real line and

`(u, v) = |u− v|.
We begin by reducing TW-TSP on a line to a geometric problem of intersecting as many

slanted segments as possible using an x-monotone curve. We then present a constant ratio approx-
imation algorithm for the special case in which the length of every time window is one. We use
this algorithm to obtain an O(log L)-approximation, where L = maxv |Iv|

minu |Iu| . Finally, we present an

O(log n)-approximation algorithm, where n denotes the size of S.
For simplicity we consider the case of unit point profits (i.e. p(v) = 1, for every v). The case of

weighted profits easily follows.

3.1 A reduction to Max-Monotone-Tour

We depict an instance of TW-TSP on a line using a two-dimensional diagram (see Fig. 1). The x-
axis corresponds to the value of a point. The y-axis corresponds to time. A time window [r(v), d(v)]
of point v is drawn as a vertical segment, the endpoints of which are: (v, r(v)) and (v, d(v)).

time

location

Figure 1: A two-dimensional diagram of an instance of TW-TSP on a line.

We now rotate the picture by 45 degrees. The implications are: (i) segments corresponding to
time windows are segments with a 45 degree slope, and (ii) feasible tours are (weakly) x-monotone
curves; namely, a curve with slopes in the range [0, 90] degrees.

This interpretation reduces TW-TSP on a line to the problem of max-monotone-tour defined
as follows (see Fig. 2). The input consists of a collection of slanted segments in the plane, where
the slope of each segment is 45 degrees. The goal is to find an x-monotone curve starting at
the origin that intersects as many segments as possible. Note that the max-monotone-tour

problem generalizes the longest monotone subsequence problem [ES35]; the reduction is obtained
by considering segments of zero length.

We remark that our results can be extended also to instances of max-monotone-tour in
which the segments have arbitrary slopes. Namely, it is not essential that all the segments have
the same slope of 45 degrees.

3.2 Unit time windows

In this section we present an 8-approximation algorithm for the case of unit time windows. In
terms of the max-monotone-tour problem, this means that the length of each slanted segment

3

origin

Figure 2: A max-monotone-tour instance obtained after rotation by 45 degrees.

is 1.
We begin by overlaying a grid whose square size is 1√

2
× 1√

2
on the plane. We shift the grid

so that endpoints of the slanted segments do not lie on the grid lines. It follows that each slanted
segment intersects exactly one vertical (resp. horizontal) line of the grid. (A technicality that we
ignore here is that we would like the origin to be a grid-vertex even though the grid is shifted).
Consider a directed-acyclic graph (DAG) whose vertices are the crossings of the grid and whose
edges are the vertical and horizontal segments between the vertices. We direct all the horizontal
DAG edges in the positive x-direction, and we direct all the vertical DAG edges in the positive
y-direction. We assign each edge e of the DAG a weight w(e) that equals the number of slanted
segments that intersect e. The algorithm computes a path p of maximum weight in the DAG
starting from the origin (see [CLR90, p. 538]). The path is the tour that the agent will use. We
claim that this is an 8-approximation algorithm.

Theorem 1 The approximation ratio of the algorithm is 8.

We prove Theorem 1 using the two claims below. Given a path q, let k(q) denote the number
of slanted segments that intersect q. Let p∗ denote an optimal path in the plane, and let p′ denote
an optimal path restricted to the grid. Let k∗ = k(p∗), k′ = k(p′), and k = k(p).

Claim 1 k ≥ k′/2.

Proof: Let w(q) denote the weight of a path q in the DAG. We claim that, for every grid-path q,

w(q) ≥ k(q) ≥ w(q)/2.

The fact that w(q) ≥ k(q) follows directly from the definition of edge weights. The part k(q) ≥
w(q)/2 follows from the fact that every slanted segment intersects exactly two grid edges. Hence, a
slanted segment that intersects q may contribute at most 2 to w(q). Since the algorithm computes
a maximum weight path p, we conclude that

k(p) ≥ w(p)/2 ≥ w(p′)/2 ≥ k(p′)/2,

and the claim follows. 2

Claim 2 k′ ≥ k∗/4.

Proof: Let C1, . . . , Cm denote the set of grid cells that p∗ traverses. We decompose the sequence
of traversed cells into blocks. We say that point (x1, y1) dominates point (x2, y2) if x1 ≤ x2 and

4

y1 ≤ y2. We extend domination to sets (blocks, respectively) as follows: A set (block, respectively)
B dominates a set (block, respectively) B ′ if every point in B dominates every point in B ′. Note
that if point p1 dominates point p2, then it is possible to travel from p1 to p2 along an x-monotone
curve.

Let B1, B2, . . . , Bm′ denote the decomposition of the traversed cells into horizontal and vertical
blocks. The odd indexed blocks are horizontal blocks and the even indexed blocks are vertical
blocks. We present a decomposition in which Bi dominates Bi+2, for every i.

We define B1 as follows. Let a1 denote the horizontal grid line that contains the top side of
C1. Let Ci1 denote the last cell whose top side is contained in a1. The block B1 consists of the
cells C1 ∪ · · · ∪ Ci1 . The block B2 is defined as follows. Let b2 denote the vertical grid line that
contains the right side of cell Ci1 . Let Ci2 denote the last cell whose right side is contained in b2.
The block B2 consists of the cells Ci1+1 ∪ · · · ∪Ci2 . We continue decomposing the cells into blocks
in this manner. Figure 3 depicts such a decomposition.

Figure 3: A decomposition of the cells traversed by an optimal x-monotone curve into alternating
horizontal and vertical blocks. The solid line depicts an optimal x-monotone curve (the slanted
segments are not depicted). The dark (light, respectively) rectangles denote horizontal (vertical,
respectively) blocks.

Consider the first intersection of p∗ with every slanted segment it intersects. All these inter-
section points are in the blocks. Assume that at least half of these intersection points belong to
the horizontal blocks (the other case is proved analogously). We construct a grid-path p̃ as follows.
The path p̃ passes through the lower left corner and upper right corner of every horizontal block.
For every horizontal block, p̃ goes from the bottom left corner to the upper right corner along one
of the following sub-paths: (a) the bottom side followed by the right side of the block, or (b) the
left side followed by the top side of the block. For each horizontal block, we select the sub-path that
intersects more slanted segments. The path p̃ hops from a horizontal block to the next horizontal
block using the vertical path between the corresponding corners.

Note that if a slanted segment intersects a block, then it must intersect its perimeter at least
once. This implies that, per horizontal block, p̃ is 2-approximate. Namely, the selected sub-path
intersects at least half the slanted segments that p∗ intersects in the block. Since at least half the
intersection points reside in the horizontal blocks, it follows that p̃ intersects at least k∗/4 slanted
segments. Since p′ is an optimal path in the grid, it follows that k(p′) ≥ k(p̃), and the claim follows.
2

5

Strongly polynomial running time. The size of the DAG constructed by the algorithm is
weakly polynomial. Namely, the grid has to bound all the slanted segments. Hence, the width
of the grid is linear in (i) the difference between the last deadline and the first release time (i.e.,
maxv∈S d(v)−minv∈S r(v) and (ii) the distance between the rightmost point and the leftmost point
(i.e., maxv′,v′′∈S v′ − v′′).

The algorithm can be easily modified to a strongly polynomial algorithm by the following
modification. Consider the bounding box of the slanted segments. Within this bounding box, the
grid is constructed by drawing evenly spaced horizontal and vertical lines (i.e., distance 1/

√
2). We

consider a grid line to be interesting if it intersects a slanted segment. Since the length of every
slanted segment is 1, the number of interesting grid lines in linear. We now consider the subgrid
consisting only of interesting grid lines. The maximum number of slanted segments crossed by a
monotone path in the subgrid induced by the interesting grid lines equals k ′. The reason is that
if p′ is a path in the grid, then there exists a path p′′ in the subgrid of interesting grid lines that
intersects the same slanted segments at the same points.

We point out that one need not perform exact calculations with irrational numbers. The reason
is that, for every arrangement of n slanted segments, there exists a shift of the grid, such that the
minimum distance between an endpoint of a slanted segment and grid line is Ω(1/n). Such a shift
can be computed with precision O(1/n). Once the shift amount is computed, an approximate grid
is computed; the grid lines of the approximate grid are obtained by rounding the positions of the
exact grid lines with an error that is O(1/n).

Reducing the constant. The approximation ratio in Theorem 1 can be reduced to (4 + ε), for
every constant 1 ≥ ε > 0, using the following construction. Let P = (x1, y1) and Q = (x2, y2) be
two points on the grid, where P dominates Q, namely, x1 ≤ x2 and y1 ≤ y2 (we often say also that
Q is after P). Let b′ denote a constant integer (b′ = 1+ d8

ε
e). We now refer to the subgrid induced

by the interesting lines simply as the grid. Define a turn in a grid path to be a transition from a
horizontal grid segment to vertical grid segment, or vice versa. The number of monotone rectilinear
paths in the grid from P to Q with at most b′ turns is bounded by O(nb′). We construct a directed
graph in which the vertex set is the set of grid points and the arc set consists of all the pairs of
points (P,Q), where P dominates Q. Every arc (P,Q) is assigned a weight w(P,Q) as follows:

• For every monotone path π in the grid from P to Q, let I(π) denote the set of slanted segments
that intersect π and do not intersect a grid segment (Q,Q′) (note that Q dominates Q′ so
the grid segment (Q,Q′) is after the path π).

• Define w(P,Q) to be the maximum |I(π)|, where π is a monotone path in the grid from P to
Q with at most b′ turns.

We now compute a heaviest path p in this directed graph. We denote by w(p) be the weight
of p. Recall that k∗ denotes the maximum number of slanted segments intersected by a monotone
path in the plane. The following claim shows the approximation ratio of the algorithm is (4 + ε).

Claim 3

k(p) ≥ k∗

4 + ε
.

Proof: Consider an optimal tour p∗. As in Claim 2, we decompose p∗ into horizontal and
vertical blocks. We enumerate the blocks in the decomposition, i.e., B0, B1, . . . , B`. Without loss
of generality, p∗ ends in the upper right corner of the grid, and hence, the upper right corner of

6

B` is the upper right corner of the grid. Therefore, without loss of generality, the path p also ends
in the right upper corner of the grid. This guarantees that the weight of the last edge in the path
p equals the number of slanted segments intersected by the corresponding grid-path (i.e., slanted
segments cannot be intersected after the last edge).

We define the gain gi of block Bi to be the number of slanted segments that p∗ intersects in
Bi for the first time. Let b = b′ − 1 = d8

ε
e. There exists an offset a ∈ {0, . . . , k − 1} such that

∑

{j: mod (j,b)=a} gj ≤ k∗/b.

Let P0 denote the origin, P1 denote the upper right corner of the block Ba. For 1 < j ≤ `−a
b

+1,
let Pj denote the upper right corner of the block Ba+(j−1)·b. If the upper right corner of B` is not
defined as the last point, then we define Pd `−a

b
+1e to be the upper right corner of B`. Let r denote

the index of the last defined point.
We construct the path π as follows. The path traverses the points P0 → P1 → · · · → Pr.

Between every two consecutive points Pj and Pj+1 the path π follows a path π′ between Pj and Pj+1

that intersects w(Pj , Pj+1) slanted segments. Such a path must exist according to the definition of
w(Pj , Pj+1). It suffices to show that k(π) ≥ k∗

4+ε
.

Consider two consecutive points Pj and Pj+1. Let Bs, . . . , Bt denote the set of blocks between
the points Pj and Pj+1. We claim that

w(Pj , Pj+1) ≥
1

4
·

t−1
∑

i=s

gi. (2)

Equation 2 is proved as follows. Let J denote the subset of slanted segments that (i) can be
intersected by grid-paths from Pj to Pj+1 and (ii) can be intersected also after Pj+1. Note that
intersections with slanted segments in J do not contribute to the weight of the arc (Pj , Pj+1).
Moreover, since every slanted segment is of unit length, the lower left corner of block Bt dominates
every slanted segment in J . Hence, slanted segments intersected in blocks Bs, . . . , Bt−1 do not
belong to J . Following the proof of Claim 2, we can construct a grid-path from Pj to Pj+1 that
intersects at least 1

4 ·
∑t−1

i=s gi slanted segments not in J . Hence, Equation 2 follows. (In fact,
Equation 2 is the only place where we rely on the slanted segments having unit length.)

It follows that

w(π) =
r

∑

j=0

w(Pj , Pj+1)

≥ 1

4
·





∑̀

i=0

gi −
∑

{j: mod (j,b)=a}
gj





≥ 1

4
· k∗ · (1− 1

b
)

= k∗ · 1
4
· (1− 1

d8
ε
e)

> k∗ · 1

4 + ε
.

Where the last inequality holds for every ε ≤ 1.
Finally, we note that for every tour q, w(q) ≤ k(q), since the construction guarantees that,

for every tour q, every slanted segment I may contribute to the weight of at most one edge in
q. Therefore, intersections with slanted segments are not counted multiple times, and the claim
follows. 2

7

3.3 An O(logL)-approximation

In this section we present an algorithm with an approximation ratio of 16·log L, where L = maxv |Iv|
minu |Iu| .

We begin by considering the case that the length of every time window is in the range [1, 2).

Time windows in [1, 2). The algorithm for unit time windows applies also for this case and
yields an approximation ratio that is twice as large. Note that the choice of grid square size and
the shifting of the grid implies that each slanted segment intersects at most two horizontal grid
lines and at most two vertical grid lines. This increases the approximation ratio to 16 (i.e., the
ratio k′/k is at most 4).

Arbitrary time windows. In this case we partition the slanted segments to length sets; the ith
length set consists of all the slanted segments whose length is in the range [2i, 2 · 2i). We apply
the algorithm to each length set separately, and pick the best solution. The approximation ratio of
this algorithm is 16 · log L.

Moreover, the proof of Claim 3 relies only on the fact that each slanted segment intersects at
most one vertical grid edge and one horizontal grid edge. In the case of slanted segments whose
length is in the range [1, 2), we need to skip two blocks instead of one. Hence instead of Equation 2
we obtain:

w(Pj , Pj+1) ≥
1

4
·

t−2
∑

i=s

gi.

By repeating the arguments in Claim 3, we obtain a (4 + ε) · log L approximation algorithm for
arbitrary slanted segment lengths.

3.4 An O(logn)-approximation

In this section we present an approximation algorithm for max-monotone-tour with an ap-
proximation ratio of O(log n) (where n denotes the number of slanted segments). For the sake of
simplicity, we first ignore the requirement that a TW-tour must start in the origin; this requirement
is dealt with in the end of the section.

The algorithm is based on partitioning the set S of slanted segments to log n disjoint sets
S1, . . . , Slog n. Each set Si satisfies a comb-property defined as follows.

Definition 1 A set S ′ of slanted segments satisfies the comb property if there exists a set of vertical
lines L such that every segment s ∈ S ′ intersects exactly one line in L.

We refer to a set of slanted segments that satisfy the comb property as a comb.
We begin by presenting an constant approximation algorithm for combs. We then show how

a set of slanted segments can be partitioned to log n combs. The partitioning combined with the
constant ratio approximation algorithm for combs yields an O(log n)-approximation algorithm.

A constant approximation algorithm for combs. Let S ′ denote a set of slanted segments
that satisfy the comb property with respect to a set L of vertical lines. We construct a grid as
follows: (1) The set of vertical lines is L. (2) The set of horizontal lines is the set of horizontal
lines that pass through the endpoints of slanted segments. By extending the slanted segments
by infinitesimal amounts, we may assume that an optimal tour does not pass through the grid’s
vertices. Note that the grid consists of 2n horizontal lines and at most n vertical lines.

8

We define an edge-weighted directed acyclic graph in a similar fashion as before. The vertices
are the crossings of the grid. The edges are the vertical and horizontal segments between the
vertices. We direct all the horizontal DAG edges in the positive x-direction, and we direct all the
vertical DAG edges in the positive y-direction. We assign each edge e of the DAG a weight w(e)
that equals the number of slanted segments that intersect e. The algorithm computes a maximum
weight path p in the DAG. We claim that this is a 12-approximation algorithm.

Theorem 2 The approximation ratio of the algorithm is 12.

Proof: The proof is similar to the proof of Theorem 1. We use the same notation where (i) k∗

denotes the maximum number of slanted segments that an x-monotone curve can intersect; (ii) k ′

denotes the maximum number of slanted segments that a curve restricted to the grid can intersect;
and (iii) k = k(p) denotes the number of slanted segments intersected by the algorithm’s solution.
We first claim that

k ≥ k′/3. (3)

Every slanted segment only intersects a single vertical grid line, and hence a single vertical grid
edge. Let a column denote the area bounded by two consecutive vertical lines. The set of horizontal
grid edges contained in the same column constitutes an anti-chain in the DAG. Namely, a path
in the DAG may contain at most one horizontal grid edge per column. Since a slanted segment
intersects exactly one vertical line, it follows that it is contained in two consecutive columns. It
follows that a slanted segment may intersect at most two horizontal grid edges along a path in the
DAG. We conclude that, for every path q in the DAG, k(q) ≥ w(q)/3, and hence Eq. 3 follows.

Following the proof of Claim 2, we claim that

k′ ≥ k∗/4. (4)

The theorem follows from Equations 3 and 4. 2

Partitioning into combs. The partitioning is based on computing a balanced interval tree [BKOS00,
p. 214]. Such a tree is constructed recursively as follows: At first, bisect the set of slanted segments
using a vertical line, and the comb simply equals the set of slanted segments intersected by the
bisector. Now, apply this bisection to each set of slanted segments enclosed by two consecutive
bisectors of the previous stage. The comb Si equals the set of slanted segments intersected by the
bisectors belonging to the ith level of the recursion. The depth of the interval tree is at most log n,
and hence, at most log n combs are obtained. Figure 4 depicts an interval tree corresponding to a
set of slanted segments. Membership of a slanted segment s in a subset corresponding to a vertical
line v is marked by a circle positioned at the intersection point. Figure 5 depicts a single comb; in
this case the comb corresponding to the second level of the interval tree.

Finding a tour starting in the origin. The approximation algorithm can be modified to find a
TW-tour starting at the origin at the price of slightly increasing the approximation ratio as follows.
The first comb is the set of slanted segments that intersect the vertical line that passes through the
origin. This means that the number of combs increases by at most one. We also add the vertical
line that passes through the origin to the grid of every comb.

Remark. The algorithm for TW-TSP on a line can be easily extended to non-unit point profits
p(v). All one needs to do is assign grid edge e a weight w(e) thats equals the sum of profits of the
slanted segments that intersect e.

9

Figure 4: An interval tree corresponding to a set of slanted segments.

Figure 5: A comb induced by an interval tree.

10

3.5 Reducing the constant for comb

Despite the fact that a segment may intersect many grid cells, a similar construction to the one
presented in paragraph 3.2 is applicable for combs as well. The comb property ensures that, for
every rectilinear path, every slanted segment intersects at most three grid-edges that appear in two
consecutive blocks. Hence we may avoid the multiple counts in the arcs lengths by losing a factor
of O(ε) of the segments, improving the constant in theorem 2 to 4 + ε.

4 Asymmetric TW-TSP

In this section we present algorithms for the non-metric version of TW-TSP. Asymmetric TW-TSP
is a more general version of TW-TSP in which the distance function `(u, v) is not a metric. Note
that the triangle inequality can be imposed by metric completion (i.e. setting `(u, v) to be the
length of the shortest path from u to v). However, the distance function `(u, v) may be asymmetric
in this case.

4.1 Motivation

One way to try to solve TW-TSP is to (i) Identify a set of candidate arrival times for each point.
(ii) Define an edge weighted DAG over pairs (v, t), where v is a point and t is a candidate arrival
times. The weight of an arc (v, t)→ (v ′, t′) equals p(v′). (iii) Find a longest path in the DAG with
respect to edge weights.

There are two obvious obstacles that hinder such an approach. First, the number of candidate
arrival times may not be polynomial. Second, a point may appear multiple times along a DAG
path. Namely, a path zig-zagging back and forth to a point v erroneously counts each appearance
of v as a new visit. The algorithms presented in this section cope with the problem of too many
candidate points using the lexicographic order applied to sequences of arrival times of TW-tours
that traverse i points (with multiplicities). The second problem is not solved. Instead we introduce
a measure of density that allows us to bound the multiplicity of each point along a path.

4.2 Density of an instance

The quality of our algorithm for asymmetric TW-TSP depends on a parameter called the density
of an instance.

Definition 2 The density of a TW-TSP instance Π is defined by

σ(Π) = max
u,v

|Iu|
`(u, v) + `(v, u)

.

Note that σ(Π) is an upper bound on the number of “zig-zags” possible from u to v and back to u
during the time window Iu. We refer to instances in which σ(Π) < 1 as instances that satisfy the
no-round trips within time-windows condition.

4.3 Unit profits & no-round trips within time-windows

We first consider the case in which (i) σ(Π) < 1, and (ii) the profit of every point is one. In this
section we prove the following theorem.

11

Theorem 3 There exists a polynomial algorithm that, given an asymmetric TW-TSP instance Π
with unit profits and σ(Π) < 1, computes an optimal TW-tour.

Proof: Let k∗ denote the maximum number of points that a TW-tour can visit. We associate with
every tour T = {vi}k

∗

i=0 the sequence of arrival times {ti}k
∗

i=0 defined in Eq. 1. Let T ∗ = {(v∗i , t∗i)}k
∗

i=0

denote a TW-tour whose sequence of arrival times is lexicographically minimal among the optimal
TW-tours. We present an algorithm that computes an optimal tour T whose sequence of arrival
times equals that of T ∗.

We refer to a TW-tour that visits i points that ends in point v as (v, i)-lexicographically minimal
if its sequence of arrival times is lexicographically minimal among all TW-tours that visit i points
and end in point v. We claim that every prefix of T ∗ is also lexicographically minimal. For the
sake of contradiction, consider a TW-tour S = {uj}ij=0 in which ui = v∗i and the arrival time to ui

in S is less than t∗i . We can substitute S for the prefix of T ∗ to obtain a lexicographically smaller
optimal tour. The reason this substitution succeeds is that σ(Π) < 1 implies that ua 6= v∗b , for
every 0 < a < i and i < b ≤ k∗.

The algorithm is a dynamic programming algorithm based on the fact that every prefix of T ∗

is lexicographically minimal. The algorithm constructs layers L0, . . . , Lk∗ . Layer Li contains a set
of states (v, t), where v denotes the endpoint of a TW-tour that arrives at v at time t. Moreover,
every state (v, t) in Li corresponds to a (v, i)-lexicographically minimal TW-tour. Layer L0 simply
contains the state (v0, 0) that starts in the origin at time 0. Layer Lj+1 is constructed from layer
Lj as described in Algorithm 1. The procedure “replace-if-min” is given a layer Lj+1 and a state
(u, t′) and updates Lj+1 as follows: If Lj+1 does not contain a state with u as its point, then (u, t′)
is added to Lj+1. Otherwise, let (u, t′′) ∈ Lj+1 denote the state in Lj+1 that contains u as its
point. The state (u, t′) is added to Lj+1 if t′ < t′′. If (u, t′) is added, then (u, t′′) is removed from
Lj+1. Note that each layer contains at most n states, namely, at most one state per point. The
algorithm stops as soon as the next layer Lj+1 is empty. Let Lj denote the last non-empty layer
constructed by the algorithm. The algorithm picks a state (v, t) ∈ Lj with a minimal time and
returns a TW-tour (that visits j points) corresponding to this state.

Algorithm 1 Construct layer Lj+1

1: for all state (v, t) ∈ Lj , and every u 6= v do

2: t′ ← max(r(u), t + `(v, u))
3: if t′ ≤ d(u) then

4: Lj+1 ← replace-if-min(Lj+1, (u, t′)).
5: end if

6: end for

The correctness of the algorithm is based on the following claim.

Claim 4 (i) If T is a (v, i)-lexicographically minimal TW-tour that arrives in v at time t, then
(v, t) ∈ Li; and (ii) Every state (v, t) in layer Li corresponds to a (v, i)-lexicographically minimal
TW-tour.

Proof: The proof is by induction on i. The induction basis for i = 0 is trivial. Consider a
(u, i + 1)-lexicographically minimal TW-tour arriving in u at time t′. Assume that its prefix of
length i ends in v at time t. It follows that this prefix is (v, i)-lexicographically minimal. By the
induction hypothesis, it follows that (v, t) ∈ Li. The construction of Li+1 implies that (u, t′) ∈ Li+1,
as required. This completes the proof of the first part.

12

To prove the second part observe that if (u, t′) ∈ Lj+1 during the construction of Lj+1, then
there is a TW-tour that ends in u, visits j + 1 points, and arrives to u at time t ′. Finally, if
(u, t′) ∈ Lj+1, then it must correspond to a (u, j +1)-lexicographically minimal tour, otherwise, by
part (i) it would have been kicked out of Lj+1. This completes the proof of the claim. 2

Part (ii) of Claim 4 implies that the last layer constructed by the algorithm is indeed Lk∗ .
Since every prefix of T ∗ is lexicographically minimal, it follows that layer Li contains the state
(v∗i , t

∗
i). Hence, the algorithm returns an optimal TW-tour. This TW-tour also happens to be

lexicographically minimal, and the theorem follows. 2

4.4 Arbitrary density

In this section we consider instances with arbitrary density and unit profits. The dynamic pro-
gramming algorithm in this case proceeds as before but may construct more than k∗ layers. We
show that at most k∗ · (bσ(Π)c + 1) layers are constructed. A path q corresponding to a state in
layer Lj may not be simple, and hence, k(q) (the actual number of visited points) may be less than
j (the index of the layer).

The following claim proves the approximation ratio of the dynamic programming algorithm.

Claim 5 The approximation ratio of the dynamic programming algorithm is bσ(Π)c + 1.

Proof: Consider a path p = {vi}ji=0 corresponding to a state in layer Lj. Let ti denote the
arrival time to vi in p. We claim that the multiplicity of every point along p is at most bσ(Π)c+ 1.
Pick a vertex v, and let i1 < i2 < · · · < ia denote the indexes of the appearances of v along p.
Since self-loops are not allowed, it follows that between every two appearances of v, the path visits
another vertex. Density implies that, for every b = 1, . . . , a− 1,

tib+1
− tib ≥

|Iv|
σ(Π)

.

It follows that

tia − ti1 ≥ (a− 1) · |Iv|
σ(Π)

.

Since r(v) ≤ ti1 < tia ≤ d(v), it follows that σ(Π) ≥ a− 1. We conclude that the multiplicity of v
in p is at most bσ(Π)c + 1.

The index of the last layer found by the algorithm is at least k∗, and hence, the path computed
by the algorithm visits at least k∗/(bσ(Π)c + 1) points, and the claim follows. 2

4.5 Non-unit profits

In this section we consider instances of asymmetric TW-TSP with non-unit profits p(v). We first
point out a trivial reduction of Knapsack to asymmetric TW-TSP and then discuss a variation of
the dynamic programming algorithm with an approximation ratio of (1 + ε) · (bσ(Π)c + 1).

Knapsack hardness. Consider a Knapsack instance with element sizes w(v), element values
p(v), and knapsack size B. We reduce it to an asymmetric TW-TSP instance as follows. The point
set V is the set of elements plus the origin. The distance `(u, v) = w(v), for every u 6= v. The
profit of v is p(v). The time interval Iv = [0, B], for every v.

13

A (1 + ε) · (bσ(Π)c + 1)-approximation algorithm. We modify the dynamic programming
algorithm as follows. The layers are indexed Li,j. A state in layer Li,j corresponds to a path
that traverses i points (multiplicities are counted). A state in layer Li,j is a triple (v, t, p) where v
denotes a point, t denotes an arrival time, and p denotes a profit in the interval [(1+ε)j , (1+ε)j+1).
(Note that we assume that all profits p(v) are at least 1.) Each layer Li,j may contain at most one
state per point. The update rule is that a state (v, t, p) ∈ Li,j generates a state (u, t′, p′) which
is considered for insertion to layer Li+1,blog1+ε p′c. The replacement takes place only if the state
(u, t′′, p′′) already in Li+1,blog1+ε p′c satisfies t′ < t′′. It can be shown that the approximation ratio
of this dynamic programming algorithm is (1 + ε) · (bσ(Π)c + 1).

4.6 Processing times

Our algorithms for asymmetric TW-TSP can be modified to handle also processing times. The
processing time of point v is denoted by h(v) and signifies the amount of time that the agent must
spend at a visited point. The definition of arrival times is modified to:

t0 = 0

ti = max{ti−1 + h(vi−1) + `(vi−1, vi), r(vi)}. (5)

The definition of density with processing times becomes

σ(Π) = max
u,v

|Iu|
`(u, v) + `(v, u) + h(u) + h(v)

.

States are generated by the dynamic programming algorithm as follows. The arrival time t ′ of state
(u, t′) generated by state (v, t) is

t′ = max{t + h(v) + `(v, u), r(u)}.

Acknowledgments

We would like to thank Sanjeev Khanna and Piotr Krysta for helpful discussions. We especially
thank Piotr for telling us about references [T92] and [KNI98]; this enabled finding all the other
related references. We thank Wolfgang Slany for suggesting a nurse scheduling problem which
motivated this work.

References

[AS02] John Augustine and Steven S. Seiden , ”Linear Time Approximation Schemes for Vehicle
Scheduling”, SWAT 2002, LNCS 2368, pp. 30-39, 2002.

[BKOS00] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwartzkopf, “Computational
Geometry - Algorithms and Applications”, Springer Verlag, 2000.

[CLR90] Thomas H. Cormen and Charles E. Leiserson and Ronald L. Rivest, Introduction to
Algorithms, MIT Press/McGraw Hill, 1990.

[ES35] P. Erdős and G. Szekeres, “A combinatorial problem in geometry”, Compositio Math., 2,
463– 470, 1935.

14

[F75] M. L. Fredman, “On computing the length of longest increasing subsequences”, Discrete
Math. 11 (1975), 29–35.

[KNI98] Yoshiyuki Karuno, Hiroshi Nagamochi, Toshihide Ibaraki, “A 1.5-approximation for
single-vehicle scheduling problem on a line with release and handling times”, Technical Re-
port 98007, 1998. Journal version by the same authors appeared in : “Better approximation
ratios for the single-vehicle scheduling problems on line-shaped networks”, Networks 39(4):
203-209 (2002).

[KN01] Yoshiyuki Karuno and Hiroshi Nagamochi, “A 2-Approximation Algorithm for the Multi-
vehicle Scheduling Problem on a Path with Release and Handling Times”, ESA 2001, LNCS
2161, p. 218–229, 2001. Journal version by the same authors appeared in: “2-Approximation
Algorithms for the Multi-vehicle Scheduling Problem on a Path with Release and Handling
Times”, Discrete Applied Mathematics, Vol. 129/2, pp.433-447, 2003.

[T92] John N. Tsitsiklis, “Special Cases of Traveling Salesman and Repairman Problems with Time
Windows”, Networks, Vol. 22, pp. 263–282, 1992.

15

