Skip to main content

Efficient 3D-3D Vascular Registration Based on Multiple Orthogonal 2D Projections

  • Conference paper
Biomedical Image Registration (WBIR 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2717))

Included in the following conference series:

  • 902 Accesses

Abstract

In this paper, we present a new and efficient multi-modal 3D-3D vascular registration algorithm, which transforms the 3D-3D registration problem into a multiple 2D-3D vascular registration problem. Along each orthogonal axis, projected 2D image from a segmented binary 3D floating volume is compared with maximum intensity projection (MIP) image of the reference volume. At the preprocessing stage of the floating image volume, vessels are segmented and represented by a number of spheres with centers located at the skeleton points of the vessels and radii equal to the distance from the skeleton points to their closest boundary. To generate projected images from the binary 3D volume, instead of using the conventional ray-casting technique, the spheres are projected to the three orthogonal projection planes. The discrepancy between the projected image and the reference MIP image is measured by a relatively simple similarity measure, sum of squared differences (SSD). By visual comparison, we found that the performances of our method and the Mutual Information (MI)-based method are visually comparable. Moreover, based on the experimental results, our method for 3D-3D vascular registration is more computationally efficient than the MI-based method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chung, A.C.S., Wells III, W.M., et al.: Multi-modal Image Registration by Minimising Kullback-Leibler Distance. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 525–532. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Chan, H.-M., Chung, A.C.S., et al.: Multi-modal image registration by minimizing Kullback-Leibler distance between expected and observed joint class histograms. In: CVPR 2003 (2003) (to appear)

    Google Scholar 

  3. Chan, H.-M., Chung, A.C.S., Yu, S.C.H.: 2D-3D Vascular Registration Algorithm between Digital Subtraction Angiographic (DSA) and Magnetic Resonance Angiographic (MRA) Images. In: MICCAI 2003 (2003) (Submitted)

    Google Scholar 

  4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Inc., Chichester (1991)

    Book  MATH  Google Scholar 

  5. Kullback, S.: Information Theory and Statistics. Dover Publications, Inc., New York (1968)

    Google Scholar 

  6. Wells, W., Viola, P., et al.: Multi-modal Volume Registration by Maximization of Mutual Information. Medical Image Analysis 1, 32–52 (1996)

    Article  Google Scholar 

  7. Colignon, A., et al.: Automated multi-modality image registration based on information theory. In: IPMI, pp. 263–274. Kluwer Academic Publisher, Dordrecht (1995)

    Google Scholar 

  8. Wyatt, P., Noble, J.: MAP MRF Joint Segmentation and Registration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 580–587. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Cosman, E.: Rigid Registration of MR and Biplanar Fluoroscopy, Master Thesis, Dept. of Electrical Engineering and Computer Engineering. MIT, Cambridge (2000)

    Google Scholar 

  10. Press, W.H., Teukolsky, S.A., et al.: Numerical Recipes in C, 2nd edn., pp. 402–405, 412-420. Cambridge University Press, Kluwer Academic Publisher (1995)

    Google Scholar 

  11. Kita, Y., Wilson, D.L., et al.: Real-time Registration of 3D Cerebral Vessels to X-rayAngiograms. In: MICCAI 1997, pp. 1125–1133 (1997)

    Google Scholar 

  12. Liu, A., Bullitt, E., et al.: 3D/2D Registration via skeletal near projective invariance intubular objectives. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 952–963. Springer, Heidelberg (1998)

    Google Scholar 

  13. Feldmar, J., Ayache, N., et al.: 3D-2D projective registration of free-form curves and surfaces, INRIA, Report # 2434 (1994)

    Google Scholar 

  14. Feldmar, J., Malandain, G., et al.: Matching 3D MR Angiography Data and 2D X-ray Angiograms. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997, CVRMed 1997, and MRCAS 1997. LNCS, vol. 1205, pp. 129–138. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  15. Roche, A., Malandain, G., et al.: Multimodal image registration by maximization of the Correlation Ratio, INRIA, Report # 3378 (1998)

    Google Scholar 

  16. McLaughlin, R.A., Hipwell, J., et al.: A comparison of 2D-3D intensity-based registration and feature-based registration for neurointerventions. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 517–524. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Fisher, R., Perkins, S., et al. (2000), http://www.dai.ed.ac.uk/HIPR2/skeleton.htm

  18. Gagvani, N.: Skeletons and Volume Thinning in Visualization., MS. Thesis, Dept. of Electrical and Computer Engineering, Rutgers University, New Brunswick, New Jersey (1997)

    Google Scholar 

  19. Shahrokni, A., Soltanian-Zadeh, H., et al.: Fast skeletonization algorithm for 3-D elongated objects. Proceedings of SPIE 4322, 323–330 (2001)

    Article  Google Scholar 

  20. Palagyi, K., Sorantin, R., et al.: A Sequential 3D Thinning Algorithm and Its Medical Applications. In: IPMI 2001, pp. 409–415 (2001)

    Chapter  Google Scholar 

  21. Zhou, Y., Toga, A.: Efficient Skeletonization of Volumetric Objects. IEEE Transactions on Visualization and Computer Graphics, 196–209 (1999)

    Google Scholar 

  22. Jain, A.K.: Fundamentals of Digital Image Processing, pp. 381–389. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  23. Watt, A., Watt, M.: Advanced Animation and Rendering Techniques: Theory and Practice. Addison-Wesley, Reading (1992)

    Google Scholar 

  24. Pennec, X.: Toward a generic framework for recognition based on uncertain geometric features. Videre: Journal of Computer Vision Research 1(2), 58–87 (1998)

    Google Scholar 

  25. Maurer Jr., C.R., Maciunas, R.J., Fitzpatrick, J.M.: Registration of head CT images to physical space using multiple geometrical features. In: Proc. SPIE Medical Imaging 1998, San Diego, CA, February 1998, vol. 3338, pp. 72–80 (1998)

    Google Scholar 

  26. Aylward, S., Bullitt, E.: Initialization, Noise, Singularities, and Scale in Height-Ridge Traversal for Tubular Object Centerline Extraction. IEEE Transactions on Medical Imaging, 61–75 (February 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, HM., Chung, A.C.S. (2003). Efficient 3D-3D Vascular Registration Based on Multiple Orthogonal 2D Projections. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds) Biomedical Image Registration. WBIR 2003. Lecture Notes in Computer Science, vol 2717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39701-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39701-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20343-8

  • Online ISBN: 978-3-540-39701-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics