Skip to main content

Chordal Topologies for Interconnection Networks

  • Conference paper
High Performance Computing (ISHPC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2858))

Included in the following conference series:

  • 599 Accesses

Abstract.

The class of dense circulant graphs of degree four with optimal distance-related properties is analyzed in this paper. An algebraic study of this class is done. Two geometric characterizations are given, one in the plane and other in the space. Both characterizations facilitate the analysis of their topological properties and corroborate their suitability for implementing interconnection networks for distributed and parallel computers. Also a distance-hereditary non-disjoint decomposition of these graphs into rings is computed. Besides its practical consequences, this decomposition allows us the presentation of these optimal circulant graphs as a particular evolution of the traditional ring topology.

This work has been partially supported by the Spanish CICYT project TIC2001-0591-C02-01 and by the Spanish Ministry of Education under grants FP-2001-2482,PR2002-0043 and BFM2001-1294.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adám, A.: Research problem 2-10. J. Combinatorial Theory 393, 1109–1124 (1991)

    Google Scholar 

  2. Adiga, N., et al.: An Overview of the BlueGene/L Supercomputer. In: Supercomputing 2002 (November 2002)

    Google Scholar 

  3. Arden, B.W., Lee, H.: Analysis of Chordal Ring Networks. IEEE Transactions on Computers C-30(4), 291–295 (1981)

    Article  MathSciNet  Google Scholar 

  4. Beivide, R., Herrada, E., Balczar, J.L., Arruabarrena, A.: Optimal Distance Networks of Low Degree for Parallel Computers. IEEE Transactions on Computers C-40(10), 1109–1124 (1991)

    Article  Google Scholar 

  5. Bermond, J.-C., Comellas, F., Hsu, D.F.: Distributed Loop Computer Networks: A Survey. Journal of Parallel and Distributed Computing 24, 2–10 (1995)

    Article  Google Scholar 

  6. Bose, B., Broeg, B., Known, Y., Ashir, Y.: Lee Distance and Topological Properties of k-ary n-cubes. IEEE Transactions on

    Google Scholar 

  7. Computers, W.J.: The Illiac IV System. Proc. IEEE 44(8), 1021–1030 (1995); Bouknight, W.J., Denenberg, S.A., McIntyre, D.E., Randall, J.M., Sameh, A.H., Slotnick, D.L.: The Illiac IV System. Proc. IEEE 60(4), 369–388 (1972)

    Article  Google Scholar 

  8. Fiol, M.A., Yebra, J.L., Alegre, I., Valero, M.: A Discrete Optimization Problem in Local Networks and Data Alignment. IEEE Transactions on Computers 36(6), 702–713 (1987)

    Article  Google Scholar 

  9. Huber, K.: Codes over Tori. IEEE Trans. on Information Theory 43(2), 740–744 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. LaForge, L.E., Korver, K.F., Fadali, M.S.: What Designers of Bus and Network Architectures Should Know about Hypercubes. IEEE Transactions on Computers 52(4), 525–544 (2003)

    Article  Google Scholar 

  11. Lau, C.M., Chen, G.: Optimal Layouts of Midimew Networks. IEEE Transactions on Parallel and Distributed Systems 7(9), 954–961 (1996)

    Article  Google Scholar 

  12. Martínez, C., Beivide, R., Izu, C., Gutierrez, J.: Distance-Hereditary Embeddings of Circulant Graphs. In: Proc. of IEEE Int. Conf. on Information Technology: Coding and Computing (ITCC-2003), Las Vegas, pp. 320-324 (2003)

    Google Scholar 

  13. Mukherjee, S., Bannon, P., Lang, S., Spink, A., Webb, D.: The Alpha 21364 Network Architecture. IEEE Micro 22(1), 26–35 (2002)

    Article  Google Scholar 

  14. Puente, V., Izu, C., Gregorio, J.A., Beivide, R., Prellezo, J.M., Vallejo, F.: Rearranging Links to Improve the Performance of Parallel Computers: The Case of Midimew Networks. In: Proc. of International Conference on Supercomputing. ICS 2000. pp. 44-53 (2000)

    Google Scholar 

  15. Wilkov, R.S.: Analysis and Design of Reliable Computer Networks. IEEE Trans. On Communications 20, 660–678 (1972)

    Article  Google Scholar 

  16. Wong, C.K., Coppersmith, D.: A Combinatorial Problem Related to Multimodule Memory Organizations. Journal of the ACM 21(3), 392–402 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yang, Y., Funashashi, A., Jouraku, A., Nishi, H., Amano, H., Sueyoshi, T.: Recursive Diagonal Torus: An Interconnection Network for Massively Parallel Computers. IEEE Transactions on Parallel and Distributed Systems 12(7), 701–715 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beivide, R., Martínez, C., Izu, C., Gutierrez, J., Gregorio, JÁ., Miguel-Alonso, J. (2003). Chordal Topologies for Interconnection Networks. In: Veidenbaum, A., Joe, K., Amano, H., Aiso, H. (eds) High Performance Computing. ISHPC 2003. Lecture Notes in Computer Science, vol 2858. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39707-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39707-6_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20359-9

  • Online ISBN: 978-3-540-39707-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics