Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2799))

  • 1022 Accesses

Abstract

We study a power reduction method for the asynchronous dual-rail bus. A preliminary analysis of data communication patterns between a processor and a memory module reveals that many communications deliver a set of data items repeatedly. To exploit such communication characteristics, a frequent value cache(FVC) method is proposed that delivers not always data itself but sometimes an index of data item of FVC. Because of the lower switching activity, FVC reduces the power consumption of the asynchronous dual-rail bus. Simulation results illustrate that FVC reduces the power consumption of the normal asynchronous dual-rail bus by 25% and 30% at maximum for integer and floating-point benchmarks, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hauck, S.: Asynchronous Design Methodologies: An Overview. Proc. of the IEEE 83(1), 69–93 (1995)

    Article  MathSciNet  Google Scholar 

  2. Lin, R.-B., Tsai, C.-M.: Theoretical Analysis of Bus-Invert Coding. IEEE Trans. on VLSI 10(6), 929–935 (2002)

    Article  Google Scholar 

  3. Stan, M.R., Burleson, W.P.: Low-Power Encoding for Global Communication in CMOS VLSI. IEEE Trans. on VLSI 5(4), 444–455 (1997)

    Article  Google Scholar 

  4. Macii, E., Pedram, M., Somenzi, F.: High-Level Power Modeling, Estimation, and Optimization. IEEE Trans. on VLSI 17(11), 1061–1079 (1998)

    Google Scholar 

  5. Lang, T., Musoll, E., Cortadella, J.: Extension of the Working-Zone-Encoding Method to Reduce the Energy on the Microprocessor Data Bus. In: Proc. of the Conf. on Computer Design, pp. 414–419 (1998)

    Google Scholar 

  6. Pamprasad, S., Shanbhag, N.R., Hajj, I.N.: Coding for Low-Power Address and Data Busses: A Source-Coding Framework and Applications. In: Proc. of the Conf. on VLSI Design, pp. 18–23 (1998)

    Google Scholar 

  7. Shin, Y., Chae, S.-I., Choi, K.: Partial Bus-Invert Coding for Power Optimization of System Level Bus. In: Proc. of the Symp. on Low Power Electronics and Design, pp. 127–129 (1998)

    Google Scholar 

  8. Shin, Y., Choi, K.: Narrow Bus Encoding for Low Power Systems. In: Proc. of the Asia and South Pacific Design Automation Conf, pp. 217–220 (2002)

    Google Scholar 

  9. Musoll, E., Lang, T., Cortadella, J.: Working-Zone Encoding for Reducing the Energy in Microprocessor Address Buses. IEEE Trans. on VLSI 6(4), 568–572 (1998)

    Article  Google Scholar 

  10. Kapadia, H., Benini, L., De Micheli, G.: Reducing Switching Activity on Datapath Buses with Control-Signal Gating. IEEE Journal of Solid-State Circuits 34(3), 405–414 (1999)

    Article  Google Scholar 

  11. Stan, M.R., Burleson, W.P.: Bus-Invert Coding for Lower-Power I/O. IEEE Trans. on VLSI 3(1), 49–58 (1995)

    Article  Google Scholar 

  12. Madhu, M., Murty, V.S., Kamakoti, V.: Dynamic Coding Technique for Low- Power Data Bus. In: Proc. of the IEEE Computer Society Annual Symp. on VLSI, pp. 252–253 (2003)

    Google Scholar 

  13. Lin, R.-B., Chen, J.-C.: Lower Power CMOS Off-Chip Drivers with Slew-Rate Difference. In: Proc. of the Asia and South Pacific Design Automation Conf., pp. 169–172 (1999)

    Google Scholar 

  14. Verhoeff, T.: Delay-Insensitive Codes: An Overview. Distributed Computing 3, 1–8 (1988)

    Article  MATH  Google Scholar 

  15. Bainbridge, W.J., Furber, S.B.: Delay Insensitive System-on-Chip Interconnect using 1-of-4 Data Encoding. In: Proc. of the Symp. on Asynchronous Circuits and Systems, pp. 118–126 (2001)

    Google Scholar 

  16. Bishop, B., Bahuman, A.: A Low-Energy Adaptive Bus Coding Scheme. In: Proc. of the IEEE Workshop of VLSI, pp. 118–122 (2001)

    Google Scholar 

  17. Burger, D., Austin, T.: The SimpleScalar Tool Set, Version 2.0, Technical Report, CS-TR-97-1342, University of Wisconsin Madison (1997)

    Google Scholar 

  18. SPEC CPU Benchmarks, http://www.specbench.org/osg/cpu95

  19. Lv, T., Henkel, J., Lekatsas, H., Wolf, W.: An Adaptive Dictionary Encoding Scheme for SOC Data Buses. In: Proc. of the Design, Automation and Test in Europe Conf. and Exhibition, pp. 1059–1064 (2002)

    Google Scholar 

  20. Sotiriadis, P., Chandrakasan, A.: Low-Power Bus Coding Techniques Considering Inter-Wire Capacitances. In: Proc. of the IEEE Conf. on Custom Integrated Circuits, pp. 507–510 (2002)

    Google Scholar 

  21. The Semiconductor Industry Association: The International Technology Roadmap for Semiconductor (2001)

    Google Scholar 

  22. Shivakumar, P., Jouppi, N.P.: CACTI 3.0: An Integrated Cache Timing, Power, and Area Model, HP Labs Technical Reports, WRL-2001-2 (2001)

    Google Scholar 

  23. Zangi, U., Ginosar, R.: A Low Power Video Processor. In: Proc. of the Symp. on Low Power Electronics and Design, pp. 136–138 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, BS., Lee, DI. (2003). Frequent Value Cache for Low-Power Asynchronous Dual-Rail Bus. In: Chico, J.J., Macii, E. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2003. Lecture Notes in Computer Science, vol 2799. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39762-5_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39762-5_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20074-1

  • Online ISBN: 978-3-540-39762-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics