Skip to main content

Efficient Generation of Uniform Samples from Phylogenetic Trees

  • Conference paper
Algorithms in Bioinformatics (WABI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 2812))

Included in the following conference series:

Abstract

In this paper, we introduce new algorithms for selecting taxon (leaf) samples from large phylogenetic trees, uniformly at random, under certain biologically relevant constraints on the taxa. All the algorithms run in polynomial time and have been implemented.

The algorithms have direct applications to the evaluation of phylogenetic tree and supertree construction methods using biologically curated data.

We also relate one of the sampling problems to the well-known clique problem on undirected graphs. From this, we obtain an interesting new class of graphs for which many open problems exist.

This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. Society of Industrial and Applied Mathematics (SIAM) Journal on Computing 10, 405–421 (1981)

    MATH  MathSciNet  Google Scholar 

  2. Aldous, D.J.: Stochastic models and descriptive statistics for phylogenetic trees, from yule to today. Statistical Science 16, 23–34 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10 (1992)

    Article  Google Scholar 

  4. Bininda-Emonds, O.R.P., Gittleman, J.L., Purvis, A.: Building large trees by combining phylogenetic information: A complete phylogeny of the extant carnivora (mammalia). Biological Reviews of the Cambridge Philosophical Society 74, 143–175 (1999)

    Article  Google Scholar 

  5. Bininda-Emonds, O.R.P., Gittleman, J.L., Steel, M.A.: The (super) tree of life. Annual Review of Ecology and Systematics 33, 265–289 (2002)

    Article  Google Scholar 

  6. Bininda-Emonds, O.R.P., Sanderson, M.J.: Assessment of the accuracy of matrix representation with parsimony supertree construction. Systematic Biology 50, 565–579 (2001)

    Article  Google Scholar 

  7. Eernisse, D.J., Kluge, A.G.: Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Molecular Biology and Evolution (1993)

    Google Scholar 

  8. Farris, J.S.: Methods for computing Wagner trees. Systematic Zoology 19, 83–92 (1970)

    Article  Google Scholar 

  9. Felsenstein, J.: Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27, 401–410 (1978)

    Article  Google Scholar 

  10. Felsenstein, J.: The number of evolutionary trees. Systematic Zoology 27, 27–33 (1978)

    Article  Google Scholar 

  11. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376 (1981)

    Article  Google Scholar 

  12. Fitch, W.M., Margoliash, E.: The construction of phylogenetic trees - a generally applicable method utilizing estimates of the mutation distance obtained from cycochrome c sequences. Science 155, 279–284 (1967)

    Article  Google Scholar 

  13. Foulds, L.R., Graham, R.L.: The Steiner problem in phylogeny is NP-complete. Advances in Applied Mathematics 3, 43–49 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Friedman, N., Ninio, M., Pe’er, I., Pupko, T.: A structural EM algorithm for phylogenetic inference. In: RECOMB, pp. 132–140 (2001)

    Google Scholar 

  15. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. Society of Industrial and Applied Mathematics (SIAM) Journal on Computing 1(2), 180–187 (1972)

    MATH  MathSciNet  Google Scholar 

  16. Gordon, A.D.: Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labelled leaves. Journal of Classification 3, 335–348 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jiang, T., Kearney, P., Li, M.: A Polynomial Time Approximation Scheme for Inferring Evolutionary Trees from Quartet Topologies and Its Application. Society of Industrial and Applied Mathematics (SIAM) Journal on Computing 30(6), 1942–1961 (2001)

    MATH  MathSciNet  Google Scholar 

  18. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. In: Munro, H.N. (ed.) Mammalian Protein Metabolism, pp. 21–132. Academic Press, New York (1969)

    Google Scholar 

  19. Kearney, P., Corneil, D.G.: Tree powers. Journal of Algorithms 29, 111–131 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kimura, M.: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 10, 111–120 (1980)

    Article  Google Scholar 

  21. Liu, F.-G.R., Miyamoto, M.M., Freire, N.P., Ong, P.Q., Tennant, M.R.: Molecular and morphological supertrees for eutherian (placental) mammals. Science 291, 1786–1789 (2001)

    Article  Google Scholar 

  22. Losos, J.B., Adler, F.D.: Stumped by trees? A generalized null model for patterns of organismal diversity. The American Naturalist 145(3), 329–342 (1995)

    Article  Google Scholar 

  23. Martins, E.P.: Phylogenies, spatial autoregression, and the comparative method: a computer simulation test. Evolution 50, 1750–1765 (1996)

    Article  Google Scholar 

  24. Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from subtrees. Discrete Applied Mathematics 69, 19–31 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Page, R.D.M.: On consensus, confidence, and “total evidence”. Cladistics 12, 83–92 (1996)

    Google Scholar 

  26. Pedersen, C.N.S., Stoye, J.: Sorting leaf-lists in a tree (1998), http://www.techfak.uni-bielefeld.de/~stoye/rpublications/internal_leaflist.ps.gz

  27. Phillips, D.: Uniform Sampling From Phylogenetics Trees. Master’s thesis, University of Waterloo (August 2002)

    Google Scholar 

  28. Purvis, A.: A composite estimate of primate phylogeny. Philosophical Transactions of the Royal Society of London Series B 348, 405–421 (1995)

    Article  Google Scholar 

  29. Ragan, M.A.: Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1, 53–58 (1992)

    Article  Google Scholar 

  30. Saitou, N., Nei, M.: The neighbour-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)

    Google Scholar 

  31. Slowinski, J.B., Guyer, C.: Testing the stochasticity of patterns of organismal diversity: an improved null model. The American Naturalist 134(6), 907–921 (1989)

    Article  Google Scholar 

  32. Willson, S.J.: An error-correcting map for quartets can improve the signals for phylogenetic trees. Molecular Biology and Evolution 18, 344–351 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kearney, P., Munro, J.I., Phillips, D. (2003). Efficient Generation of Uniform Samples from Phylogenetic Trees. In: Benson, G., Page, R.D.M. (eds) Algorithms in Bioinformatics. WABI 2003. Lecture Notes in Computer Science(), vol 2812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39763-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39763-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20076-5

  • Online ISBN: 978-3-540-39763-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics