Skip to main content

Efficient Energy Computation for Monte Carlo Simulation of Proteins

  • Conference paper
Algorithms in Bioinformatics (WABI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 2812))

Included in the following conference series:

Abstract

Monte Carlo simulation (MCS) is a common methodology to compute pathways and thermodynamic properties of proteins. A simulation run is a series of random steps in conformation space, each perturbing some degrees of freedom of the molecule. A step is accepted with a probability that depends on the change in value of an energy function. Typical energy functions sum many terms. The most costly ones to compute are contributed by atom pairs closer than some cutoff distance. This paper introduces a new method that speeds up MCS by efficiently computing the energy at each step. The method exploits the facts that proteins are long kinematic chains and that few degrees of freedom are changed at each step. A novel data structure, called the ChainTree, captures both the kinematics and the shape of a protein at successive levels of detail. It is used to find all atom pairs contributing to the energy. It also makes it possible to identify partial energy sums left unchanged by a perturbation, thus allowing the energy value to be incrementally updated. Computational tests on four proteins of sizes ranging from 68 to 755 amino acids show that MCS with the ChainTree method is significantly faster (as much as 12 times faster for the largest protein) than with the widely used grid method. They also indicate that speed-up increases with larger proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binder, K., Heerman, D.: Monte Carlo Simulation in Statistical Physics, 2nd edn. Springer, Berlin (1992)

    MATH  Google Scholar 

  2. Hansmann, U.: Parallel tempering algorithm for conformational studies of biological molecules. Chemical Physics Letters 281, 140–150 (1997)

    Article  Google Scholar 

  3. Lee, J.: New Monte Carlo algorithm: entropic sampling. Physical Review Letters 71, 211–214 (1993)

    Article  Google Scholar 

  4. Zhang, Y., Kihara, D., Skolnick, J.: Local energy landscape flattening: Parallel hyperbolic Monte Carlo sampling of protein folding. Proteins 48, 192–201 (2002)

    Article  Google Scholar 

  5. Shimada, J., Kussell, E., Shakhnovich, E.: The folding thermodynamics and kinetics of crambin using an all-atom Monte Carlo simulation. J. Mol. Bio. 308, 79–95 (2001)

    Article  Google Scholar 

  6. Shimada, J., Shakhnovich, E.: The ensemble folding kinetics of protein G from an all-atom Monte Carlo simulation. Proc. Natl. Acad. Sci. 99, 11175–11180 (2002)

    Article  Google Scholar 

  7. Abagyan, R., Totrov, M.: Biased probability Monte Carlo conformational seraches and electrostatic calculations for peptides and proteins. J. Mol. Bio. 235, 983–1002 (1994)

    Article  Google Scholar 

  8. Abagyan, R., Totrov, M.: Ab initio folding of peptides by the optimal-bias Monte Carlo minimization procedure. J. of Computational Physics 151, 402–421 (1999)

    Article  MATH  Google Scholar 

  9. Zhang, Y., Skolnick, J.: Parallel-hat tempering: A Monte Carlo search scheme for the identification of low-energy structures. J. Chem. Phys. 115, 5027–5032 (2001)

    Article  Google Scholar 

  10. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. J. Chem Phys 21, 1087–1092 (1953)

    Article  Google Scholar 

  11. Hansmann, H., Okamoto, Y.: New Monte Carlo algorithms for protein folding. Current Opinion in Structural Biology 9, 177–183 (1999)

    Article  Google Scholar 

  12. Li, Z., Scheraga, H.: Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. National Academy of Science 84, 6611–6615 (1987)

    Article  MathSciNet  Google Scholar 

  13. Grosberg, A., Khokhlov, A.: Statistical physics of macromolecules. AIP Press, New York (1994)

    Google Scholar 

  14. Northrup, S., McCammon, J.: Simulation methods for protein-structure fluctuations. Biopolymers 19, 1001–1016 (1980)

    Article  Google Scholar 

  15. Abagyan, R., Argos, P.: Optimal protocol and trajectory visualization for conformational searches of peptides and proteins. J. Mol. Bio. 225, 519–532 (1992)

    Article  Google Scholar 

  16. Kikuchi, T.: Inter-Ca atomic potentials derived from the statistics of average interresidue distances in proteins: Application to bovine pancreatic trypsin inhibitor. J. of Comp. Chem. 17, 226–237 (1996)

    Article  Google Scholar 

  17. Kussell, E., Shimada, J., Shakhnovich, E.: A structure-based method for derivation of all-atom potentials for protein folding. Proc. Natl. Acad. Sci. 99, 5343–5348 (2002)

    Article  Google Scholar 

  18. Gō, N., Abe, H.: Noninteracting local-structure model of folding and unfloding transition in globular proteins. Biopolymers 20, 991–1011 (1981)

    Article  Google Scholar 

  19. Lazaridis, T., Karplus, M.: Effective energy function for proteins in solution. Proteins 35, 133–152 (1999)

    Article  Google Scholar 

  20. Leach, A.: Molecular Modelling: Principles and Applications, Longman, Essex, England (1996)

    Google Scholar 

  21. Sun, S., Thomas, P., Dill, K.: A simple protein folding algorithm using a binary code and secondary structure constraints. Protein Engineering 8, 769–778 (1995)

    Article  Google Scholar 

  22. Halperin, D., Overmars, M.H.: Spheres, molecules and hidden surface removal. Comp. Geom.: Theory and App. 11, 83–102 (1998)

    MATH  MathSciNet  Google Scholar 

  23. Lotan, I., Schwarzer, F., Halperin, D., Latombe, J.C.: Efficient maintenance and self-collision testing for kinematic chains. In: Symp. Comp. Geo., pp. 43–52 (2002)

    Google Scholar 

  24. Thompson, S.: Use of neighbor lists in molecular dynamics. Information Quaterly, CCP5 8, 20–28 (1983)

    Google Scholar 

  25. Mezei, M.: A near-neighbor algorithm for metropolis Monte Carlo simulation. Molecular Simulations 1, 169–171 (1988)

    Article  Google Scholar 

  26. Brown, J., Sorkin, S., Latombe, J.C., Montgomery, K., Stephanides, M.: Algorithmic tools for real time microsurgery simulation. Med. Im. Ana. 6, 289–300 (2002)

    Article  Google Scholar 

  27. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for rapid interference detection. Comp. Graphics 30, 171–180 (1996)

    Google Scholar 

  28. Klosowski, J.T., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Tr. on Visualization and Comp. Graphics 4, 21–36 (1998)

    Article  Google Scholar 

  29. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast distance queries with rectangular swept sphere volumes. In: IEEE Conf. on Rob. and Auto. (2000)

    Google Scholar 

  30. Quinlan, S.: Efficient distance computation between non-convex objects. In: IEEE Intern. Conf. on Rob. and Auto., pp. 3324–3329 (1994)

    Google Scholar 

  31. van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. J. of Graphics Tools 2, 1–13 (1997)

    MATH  Google Scholar 

  32. Guibas, L.J., Nguyen, A., Russel, D., Zhang, L.: Deforming necklaces. In: Symp. Comp. Geo., pp. 33–42 (2002)

    Google Scholar 

  33. Creighton, T.E.: Proteins: Structures and Molecular Properties, 2nd edn. W. H. Freeman and Company, New York (1993)

    Google Scholar 

  34. Hubbard, P.M.: Approximating polyhedra with spheres for time-critical collision detection. ACM Tr. on Graphics 15, 179–210 (1996)

    Article  Google Scholar 

  35. Brooks, B., Bruccoleri, R., Olafson, B., States, D., Swaminathan, S., Karplus, M.: CHARMM: a program for macromolecular energy minimizationand dynamics calculations. J. of Computational Chemistry 4, 187–217 (1983)

    Article  Google Scholar 

  36. Lazaridis, T., Karplus, M.: Discrimination of the native from misfolded protein models with an energy funbction including implicit solvation. J. Mol. Bio. 288, 477–487 (1998)

    Article  Google Scholar 

  37. Elofsson, A., LeGrand, S., Eisenberg, D.: Local moves, an efficient method for protein folding simulations. Proteins 23, 73–82 (1995)

    Article  Google Scholar 

  38. Simons, K., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structure from fragments with similar local sequences using simulated annealing and bayesian scoring functions. J. Mol. Bio. 268, 209–225 (1997)

    Article  Google Scholar 

  39. Pangali, C., Rao, M., Berne, B.J.: On a novel Monte Carlo scheme for simulating water and aqueous solutions. Chemical Physics Letters 55, 413–417 (1978)

    Article  Google Scholar 

  40. Kidera, A.: Smart Monte Carlo simulation of a globular protein. Int. J. of Quantum Chemistry 75, 207–214 (1999)

    Article  Google Scholar 

  41. Pedersen, J., Moult, J.: Protein folding simulations with genetic algorithms and a detailed molecular description. J. Mol. Bio. 269, 240–259 (1997)

    Article  Google Scholar 

  42. Sun, S.: Reduced representation model of protein structure prediction: statistical potential and genetic algorithms. Protein Science 2, 762–785 (1993)

    Article  Google Scholar 

  43. Unger, R., Moult, J.: Genetic algorithm for protein folding simulations. J. Mol. Bio. 231, 75–81 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lotan, I., Schwarzer, F., Latombe, JC. (2003). Efficient Energy Computation for Monte Carlo Simulation of Proteins. In: Benson, G., Page, R.D.M. (eds) Algorithms in Bioinformatics. WABI 2003. Lecture Notes in Computer Science(), vol 2812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39763-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39763-2_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20076-5

  • Online ISBN: 978-3-540-39763-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics