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Abstract. Various different algorithms for learning Bayesian networks from data
have been proposed to date. In this paper, we adopt a novel approach that com-
bines the main advantages of these algorithms yet avoids their difficulties. In our
approach, first an undirected graph, termed the skeleton, is constructed from the
data, using zero- and first-order dependence tests. Then, a search algorithm is
employed that builds upon a quality measure to find the best network from the
search space that is defined by the skeleton. To corroborate the feasibility of our
approach, we present the experimental results that we obtained on various differ-
ent datasets generated from real-world networks. Within the experimental setting,
we further study the reduction of the search space that is achieved by the skeleton.

1 Introduction

The framework of Bayesian networks has proven to be a useful tool for capturing and
reasoning with uncertainty. A Bayesian network consists of a graphical structure, en-
coding a domain’s variables and the probabilistic relationships between them, and a nu-
merical part, encoding probabilities over these variables (Cowell et al., 1999). Building
the graphical structure of a Bayesian network and assessing the required probabilities
by hand is quite labour-intensive. With the advance of information technology, however,
more and more datasets are becoming available that can be exploited for constructing
a network automatically. Learning a Bayesian network from data then amounts to find-
ing a graphical structure that, supplemented with maximum-likelihood estimates for its
probabilities, most accurately describes the observed probability distribution.

Most state-of-the-art algorithms for learning Bayesian networks from data take one
of two approaches: the use of (in)dependence tests (Rebane and Pearl, 1987; Spirtes
and Glymour, 1991; de Campos and Huete, 2000) and the use of a quality measure
(Cooper and Herskovits, 1992; Buntine, 1991; Heckerman et al., 1995; Lam and Bac-
chus, 1993). Although with both approaches encouraging results have been reported,
they both suffer from some difficulties. With the first approach, a statistical test such as
x? is employed for examining whether or not two variables are dependent given some
conditioning set of variables; the order of the test is the size of the conditioning set
used. By starting with zero-order tests and selectively growing the conditioning set, in
theory all (in)dependence statements can be recovered from the data and the network
that generated the data can be reconstructed. In practice, however, the statistical test
employed quickly becomes unreliable for higher orders, because the number of data
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required increases exponentially with the order. If the test would then return incorrect
(in)dependence statements, errors could arise in the graphical structure. With the second
approach, a quality measure such as MDL is used for assessing the quality of candidate
graphs. The graphical structure yielding the highest score then is taken to be the one
that best explains the observed data. This approach suffers from the size of the search
space. To efficiently traverse the huge space of graphical structures, often a greedy
search algorithm is used. Other algorithms explicitly constrain the space by assuming a
topological ordering on the nodes of candidate structures. Both types of algorithm may
inadvertently prune high-quality networks from the search space of structures.

In this paper, we adopt a novel approach to learning Bayesian networks from data
that combines the main advantages of the two approaches outlined above. In our ap-
proach, first an undirected graph is constructed from the data using just zero- and first-
order dependence tests. The resulting graph, termed the skeleton of the network under
construction, is used to explicitly restrict the search space of graphical structures. In the
second phase of our approach, a search algorithm is employed to traverse the restricted
space. This algorithm orients or removes each edge from the skeleton to produce a di-
rected graphical structure. To arrive at a fully specified Bayesian network, this structure
is supplemented with maximum-likelihood estimates computed from the data. We ex-
perimented with two instances of our approach, building upon a simple hill-climber
and upon a genetic algorithm, respectively, for the search algorithm. The results that we
obtained compare favourably against various state-of-the-art learning algorithms.

The paper is organised as follows. In Section 2, we present the details of our ap-
proach. In doing so, we focus on the construction of the skeleton; an in-depth discus-
sion of the design of a competent search algorithm for the second phase of our approach
is presented elsewhere (van Dijk et al., 2003). The experimental results obtained with
our approach are reported in Section 3. We analyse various properties of the skeleton in
Section 4. We end the paper with a discussion of our approach in Section 5.

2 Skeleton-Based Learning

Our approach divides the task of learning a Bayesian network from data into two phases.
In the first phase, a skeleton is constructed. This skeleton is taken as a template that
describes all graphical structures that can be obtained by orienting or deleting its edges.
In the second phase, the search space that is defined by the skeleton is traversed by
means of a search algorithm. Focusing on the first phase, we discuss the construction of
the skeleton in Section 2.1; in Section 2.2, we briefly review related work.

2.1 Constructing the Skeleton

We consider learning a Bayesian network from a given dataset. For ease of exposition,
we assume that this dataset has been generated by sampling from a network whose
graphical structure perfectly captures the dependences and independences of the repre-
sented distribution. The undirected graph underlying the structure of this network will
be referred to as the true skeleton. In the first phase of our approach, we construct a
skeleton from the available data to restrict the search space for the second phase. In
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Fig. 1. (a) Two non-neighbouring variables Y| and Y, that are dependent yet become independent
given X. (b) The separation graph G(X) of X, with L(X) = {Z,Y), Y, }. The variable Y, is identified
as a neighbour of X since it has no incoming arcs. The arc from Y, to Z indicates Z to be a non-
neighbour. Removal of the arc from Z to Y| reveals Y] to be a neighbour of X.

doing so, we aim to find a skeleton that is already close to the true skeleton. On the
one hand, we try to avoid missing edges, because these could prune the best network
from the search space. On the other hand, we try to minimise the number of additional
edges, since these would unnecessarily increase the size of the space to be traversed. To
construct an appropriate skeleton, we analyse the dependences and independences that
are embedded in the dataset for the various different variables. To this end, a statistical
test is employed. Well-known examples of such tests are the y? statistic and the mutual
information criterion. In the sequel, we will write DT (X,Y | Z) if, for a given threshold
value, the test indicates that the variables X and Y are dependent given the (possibly
empty) conditioning set of variables Z; otherwise, we write =DT(X,Y | Z).

When constructing the skeleton, we try to identify the true neighbours of each vari-
able X. To this end, we begin by identifying all variables that have a zero-order depen-
dence on X. If for a specific variable Y, the test employed fails to report a result, for
example due to a lack of data, we assume that Y is independent of X. We now observe
that, while neighbouring variables in the true skeleton are always dependent, the reverse
does not hold: two dependent variables may be separated by one or more intervening
variables, for example as in Figure 1(a). The list L(X) = {Y | DT(X,Y)} obtained there-
fore includes neighbours as well as non-neighbours of X from the true skeleton. Since
a non-neighbour Y of X is separated from X in the true skeleton by a set of true neigh-
bours of X, we expect that ~DT(X,Y | Z) for some set Z C L(X) \ {Y}. We now use
first-order tests to remove, from among the list L(X), any non-neighbours of X. The
skeleton then in essence is found by adding an edge between X and Y € L(X) if and
only if DT(X,Y | {Z}) holds forall Z € L(X) \ {Y}.

We note that using just first-order tests as outlined above, does not suffice for
identifying all non-neighbours of X from among the list L(X). In fact, a higher-order
test may be required to establish a variable Y as a non-neighbour of X; for exam-
ple, if DT(X,Y | {Z}), DT(X,Y | {Z2}), and ~DT(X,Y | {Z1,Z>}), a second-order
test is needed for this purpose. By using higher-order tests, therefore, additional non-
neighbours could be identified and a sparser skeleton could result. As we have argued
before, however, the test employed quickly becomes unreliable for larger conditioning
sets, thereby possibly giving rise to errors in the skeleton. Since the purpose of the
skeleton is to safely reduce the search space, we restrict the tests employed to just zero-
and first-order tests, and let the search algorithm remove the spurious edges.
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We further note that the method described above, when applied straightforwardly,
could erroneously remove some true neighbours of a variable X from the list L(X).
As an example we consider the neighbours Y] and ¥ of X in the true skeleton, where
Y> has Z for a second neighbour. Now, if the true neighbour ¥} would exhibit a weak
dependence on X and the non-neighbour Z would exert a very strong influence on X,
then values for Z could hide the dependence of Y; on X. The dependence test then re-
turns -DT(X,Y; | {Z}) and Y} would be identified as a non-neighbour of X. To support
identification of the true neighbours of X, therefore, we construct an auxiliary directed
graph termed the separation graph G(X) of X. The variables from the list L(X) are the
nodes of the graph. There is an arc from a variable Z to a variable Y if -DT(X,Y | {Z})
for some Z € L(X) \ {Y}. If the first-order test fails to establish dependence or inde-
pendence, we assume dependence. In the separation graph G(X), all variables without
any incoming arcs are true neighbours of X, since these variables remain dependent on
X regardless of the conditioning set used. The thus identified neighbours are used to
find non-neighbours of X, by following their outgoing arcs. The outgoing arcs of these
non-neighbours are removed, which may cause other variables to reveal themselves as
neighbours. Figure 1(b) illustrates the basic idea of the separation graph. The process
of identifying neighbours and non-neighbours is repeated until no more neighbours of
X can be identified. Variables that are part of a cycle in the remaining separation graph
are all marked as neighbours of X: these variables correspond to ambiguous situations,
which are thus resolved safely, that is, without discarding possible neighbours. We note
that the process of identifying neighbours requires at most |L(X)| iterations. The skele-
ton is now built by finding the neighbours of every variable and connecting these.

2.2 Related Work

de Campos and Huete (2000) use a skeleton within a test-only approach. The skeleton
is built by connecting variables for which no zero- or first-order test indicates inde-
pendence. From the thus constructed skeleton, a directed graphical structure is derived
without employing a search algorithm. The authors do suggest the use of such an algo-
rithm, however. Cheng et al. (2002) also present a test-only approach that builds upon
a skeleton constructed from lower-order dependence tests. Steck and Tresp (1999) deal
with the construction of a usable skeleton when unreliable tests offer conflicting depen-
dence statements. The Hybrid Evolutionary Programming (HEP) algorithm by Wong
et al. (2002) takes an approach that is closely related to ours. Although the algorithm
does not explicitly construct a skeleton, it does use zero- and first-order dependence
tests to restrict the search space of graphical structures that is subsequently traversed
by an MDL-based search algorithm. The HEP algorithm has shown high-quality per-
formance on datasets generated from the well-known Alarm network.

3 Experiments

Our approach to learning Bayesian networks allows for various different instances. For
the first phase, different dependence tests can be employed and for the second phase,
different quality measures and different search algorithms can be used. We present two
such instances in Section 3.1 and report on their performance in Section 3.2.
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3.1 The Instances

To arrive at an instance of our approach, we have to specify a dependence test to be
used in the construction of a skeleton as outlined in the previous section. In our exper-
iments, we build upon the y? test, using independence for its null-hypothesis. The y?2
test calculates a statistic from the contingency table of the variables X and Y concerned:

(0ij— Eij)*
Elj ’

stat(X,Y) =

i,J

where O;; = p(x;,y;) - N is the observed frequency of the combination of values (x;,y;)
and E;; = p(x;) - p(yj) - N is the expected frequency of (x;,y;) if X and ¥ were indepen-
dent; N denotes the size of the available dataset and p(x;) denotes the proportion of x;.
The computed statistic is compared against a critical value s with [~ xdzf(x) =g, fora

given threshold € and the xﬁf distribution with df degrees of freedom. If the statistic is
higher than s, the null-hypothesis is rejected, that is, X and Y are established as being
dependent. The test for dependence of X and Y given Z is defined analogously, taking
independence of X and Y for every possible value of Z for the null-hypothesis. In our
experiments, we use the threshold values gy = 0.005 for the zero-order dependence test
and £; = 0.05 for the second-order dependence test. Choosing the y? test allows for a
direct comparison of our approach against the HEP algorithm mentioned above.

With the specification of a dependence test and its associated threshold values, the
first phase of our approach has been detailed. To arrive at a fully specified instance, we
now have to detail the search algorithm to be used for traversing the space of graphical
structures and the quality measure it employs for comparing candidate structures. In our
experiments, we use the well-known MDL quality measure (Lam and Bacchus, 1993).
This measure originates from information theory and computes the description length
of a Bayesian network and a given dataset; the description length equals the sum of
the size of the network and the size of the dataset after it has been compressed given
the network. While a more complex network can better describe the data and hence
compress it to a smaller size than a simpler network, it requires a larger encoding to
specify its arcs and associated probabilities. The best network for a given dataset now
is the network that best balances its complexity and its ability to describe the data.

In our experiments, we further use two different search algorithms: a simple hill-
climber and a genetic algorithm. The hillclimber sets out with the empty graph. In each
step, it considers all pairs of neighbouring nodes from the skeleton and all possible
changes to the graph under construction, that is, remove, insert, or reverse the consid-
ered arc; it then selects the change that improves the MDL score the most. This process
is repeated until the score cannot be further improved. The genetic algorithm builds
upon an encoding of graphical structures by strings of genes. Each gene corresponds
with an edge in the skeleton and can be set in one of three states, matching absence
and either orientation of the edge. A special-purpose recombination operator is used to
guarantee good mixing and preservation of building blocks (van Dijk et al., 2003).
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Table 1. Results of the experiments. The top part shows in the first column the MDL score of
the original network, averaged over five datasets. The second column shows the results from the
GA with the true skeleton, averaged over five datasets and five runs per dataset. The third column
gives the results from the hillclimber on the true skeleton, averaged over five datasets. The bottom
part lists the results obtained with the GA, with the HEP algorithm, and with the hillclimber.

|| Original (score + sd) | GA+true (score + sd) | HC+true (score)

Alarm-250 7462.14£197.20 5495.05+0.02 5645.56
Alarm-500 10862.49+196.59 9272.49£0 9519.90
Alarm-2000 31036.54+236.00 30214.72+£0 31677.65
Alarm-10000 || 138914.66+£764.09 | 138774.32+0 145564.45
Oesoca-250 10409.23£88.20 7439.62+0 7535.68
Oesoca-500 15692.60+154.25 13034.87+0.19 13274.75
Oesoca-2000 46834.31+244.07 45115.91+£2.77 45542.13
Oesoca-10000 || 213253.554+387.12 | 212364.09+£1.23 213204.67

|| GA (core+sd) | HEP (score +sd) | HC (score)

Alarm-250 5566.71+£0.20 5523.50£11.74 5654.52
Alarm-500 9458.03£1.62 9260.87+35.97 9619.94
Alarm-2000 30563.03£2.29 30397.20£161.86 | 31727.86
Alarm-10000 || 138955.544+72.36 | 139499.51+£530.41 | 144677.31
Oesoca-250 7703.43£0.82 9619.25+0.10 7743.33
Oesoca-500 13282.38+0.07 15388.89+16.75 13474.23
Oesoca-2000 45335.16+2.12 46504.41+40.18 45861.42
Oesoca-10000 || 212544.214+27.47 | 212446.04+£276.97 | 214942.04

3.2 Experimental Results

We studied the two instances of our approach outlined above and compared their per-
formance against that of the HEP algorithm. We used datasets that were generated
by means of logic sampling from two real-world Bayesian networks. The well-known
Alarm network was built to help anesthetists monitor their patients and is quite com-
monly used for evaluating the performance of algorithms for learning Bayesian net-
works. The Oesoca network was developed at Utrecht University, in close collaboration
with experts from the Netherlands Cancer Institute; it was built to aid gastroenterolo-
gists in assessing the stage of oesophageal cancer and in predicting treatment outcome.
Table 1 summarises the results obtained for datasets of four different sizes for each
network. The results for the genetic algorithm and for the HEP algorithm are averaged
over five different datasets and five runs of the algorithm per dataset; the results for
the hillclimber are averaged over the five datasets. Depending on the size of the data
set, running times ranged from two to 80 minutes for the GA, up to 30 minutes for the
hillclimber, and up to seven minutes for the HEP algorithm. Calculation of the skeleton
could take up to 50% of the total time of a run with the GA.

The bottom part of Table 1 shows that all three algorithms under study perform
quite well. The table in fact reveals that the algorithms often yield a network that has
a lower score than the original network, whose score is shown in the top part of the
table. The fact that the original network may not be the one of highest quality can be
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attributed to the datasets being finite samples. Since the datasets are subject to sampling
error, they may not accurately reflect all the (in)dependences from the original network.
The distribution observed in the data may then differ from the distribution captured
by the original network. From the bottom part of the table we further observe that
the genetic algorithm and the HEP algorithm perform comparably. The small standard
deviation revealed by the genetic algorithm indicates that it is likely to always give
results of similar quality. Since the HEP algorithm reveals much more variation, the
genetic algorithm may be considered the more reliable of the two algorithms.

The top part of Table 1 summarises the results obtained with the GA and with the
hillclimber when given the true skeleton rather than the skeleton constructed from the
data. We note that only a slight improvement in quality results from using the true
skeleton. From this observation, we may conclude that, for practical purposes, the con-
structed skeleton is of high quality. The good performance of the hillclimber, moreover,
is an indication of how much the learning task benefits from the use of the skeleton.

4 Analysis of Our Approach

We recall from Section 2 that our approach divides the task of learning a Bayesian
network from data into two phases. In the first phase, a skeleton is constructed that
is taken as a specification of part of the search space of graphical structures. In the
second phase, the specified subspace is traversed by a search algorithm. The feasibility
of our approach depends to a large extent on the properties of the computed skeleton.
First of all, to avoid pruning optimal solutions from the search space, there should
be no edges of the true skeleton missing from the computed skeleton. Secondly, there
should be few additional edges: the more densely connected the computed skeleton is,
the less feasible it is to traverse the specified subspace of graphical structures. Since
it is very hard to prove theoretical results about the computed skeleton, we opt for an
experimental investigation of its properties. In the subsequent sections, we compare the
computed skeleton against the true skeleton in increasingly realistic situations.

4.1 Use of a Perfect Oracle

To investigate by how much a computed skeleton can deviate from the true skeleton,
we performed an experiment in which we precluded the effects of sampling error and
of inaccuracy from dependence tests. To this end, we constructed an oracle that reads
the (in)dependences tested for from the structure of the original network. For the Alarm
and Oesoca networks, we thus computed two skeletons each. For the first skeleton, we
used zero-order dependence tests only: we connected each variable X to all variables
having an unconditional dependence on X. For the construction of the second skeleton,
we used zero- and first-order tests as outlined in Section 2. Table 2 reports the numbers
of additional edges found in the computed skeletons compared against the true skeleton;
the table further includes the results for a skeleton consisting of the complete graph.
Since we used a perfect oracle to establish dependence or independence, the com-
puted skeletons include all edges from the true skeletons: there are no edges missing.
Table 2 therefore gives insight in the reduction of the search space for the second phase
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Table 2. Numbers of additional edges found in the skeletons constructed using an oracle. Results
are shown for the complete skeleton, for the skeleton built by using just zero-order tests, and
for the skeleton computed by the proposed approach. The true skeleton of the Alarm network
includes 46 edges; the true skeleton of the Oesoca network includes 59 edges.

|| Alarm Oesoca

Complete skeleton 620 802
Zero-order skeleton 255 728
Computed skeleton 58 116

of our approach, that is achieved under the assumption that the strengths of the depen-
dences do not affect the results from the dependence test. The table reveals that, under
this assumption, sizable reductions are found. Note that further reductions could have
been achieved by using higher-order dependence tests. Such tests, however, would have
increased the computational demands for the construction of the skeleton. Moreover, in
practice such tests would have quickly become highly unreliable.

4.2 Use of the ¥ Test on a Perfect Dataset

In the experiments described in Section 3, we used the 2 test for studying dependence.
We recall that, for two variables X and Y, the xz test calculates a statistic stat(X,Y).
This statistic is compared against a critical value s to decide upon acceptance or rejec-
tion of the null-hypothesis of independence of X and Y. The critical value depends upon
the threshold £ and upon the degrees of freedom df of the 2 distribution used. Writing
f(e,df) for the function that yields the critical value s, we have that the test reports
dependence if stat(X,Y) > f(e.,df). Hence,

N-c¢> f(e,df),

where ¢ is a constant that depends upon the marginal and joint probability distributions
over X and Y. The choice of the threshold € now directly influences the topology of the
computed skeleton. If the threshold is set too low with respect to the size of the available
dataset, weak dependences will escape identification and the skeleton will have edges
missing. On the other hand, if the threshold is too high, coincidental correlations in the
data will be mistaken for dependences and the skeleton will include spurious edges.

To study the impact of the thresholds used with the y? test, we performed some ex-
periments from which we precluded the effects of sampling error. For this purpose,
we constructed virtual datasets that perfectly capture the probability distribution to
be recovered: for the proportions p(C) reflected in these datasets, we thus have that
p(C) = p(C), where p(C) is the true distribution over the variables C. For the Alarm
and Oesoca networks, we constructed various skeletons from virtual datasets of differ-
ent sizes, using different thresholds. In our first experiment, we focused on skeletons
that were constructed from zero-order dependence tests only. Figures 2(a) and 2(b)
show the numbers of edges from the true skeletons of the Alarm network and of the Oe-
soca network, respectively, that are missing from these zero-order skeletons. Figure 2(a)
reveals that the Alarm network consists of quite strong dependences that are effectively
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Fig. 2. (a) Results for the Alarm network. (b) Results for the Oesoca network. Shown are the
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A
=
7

[
.\“

Number of missing edges

Number of missing edges

4
!\
.mmjﬁ

\F&? .
i
AT
\\“\%\ §
i% )
il s\s“

i
i
il
il
i,
il
% 2N
gl
Ul
§§$$$\

0.6 Threshold

it
=]

i
g}
B

§
il
Al
il
iy
i &
i

A

il
I i
iz

) NN &
.Nu$i\\$§l g
)

U Z i |2
\\\\..

iyl
A
I
i
iy
i B
Z N2

SoverornFenei—

Database size

.2

\o
\ss
i
i

0.4
0.6 Threshold

i
il
ity
iyl
it
bl
il

D
At
I, <
Uil
T
N
ittt
it
Uit
il 3
i =
il
il
il /S
I S
UM =
ittty
Qi
Qi
G =
i) ™
il
il
UIIIS
W

Database size

i

]

~
°
=

(a)

Fig. 3. (a) Results for the Alarm network. (b) Results for the Oesoca network. Shown are the
numbers of edges missing from the skeleton built using zero- and first-order dependence tests.

found, even with small thresholds and small datasets. Figure 2(b) shows that a similar
observation does not apply to the Oesoca network. This network models a very weak

, even for a dataset of size

dependence that is only found with a threshold equal to zero

are recovered

by a tradeoff between the threshold used and the size of the dataset under study.

>

10000. The other relatively weak dependences modelled by the network

as described in

we used virtual datasets of different sizes and employed dif-

>

We further constructed skeletons using zero- and first-order tests

Section 2. Once again

1l

ferent thresholds for the first-order dependence test. For the zero-order test, we used,

for the Alarm network, the highest threshold with which all edges from the true skele-

ton were recovered; for the Oesoca network, we used the highest threshold with which
all dependences except the two weakest ones were found. Figures 3(a) and 3(b) show
the numbers of edges from the true skeletons of the Alarm network and of the Oe-

soca network, respectively,

that are missing from the thus computed skeletons. Figure

, with

almost all thresholds and dataset sizes. Figure 3(b) shows, once again, that the weaker
dependences modelled by the Oesoca network are only found by a tradeoff between the

3(a) shows that the true skeleton of the Alarm network is effectively recovered
threshold and the size of the dataset used.

Where Figure 3 shows the numbers of edges missing from the skeletons constructed

using zero- and first-order tests, Figure 4 shows the numbers of edges in these skeletons
that are absent from the true skeletons. Figures 4(a) and 4(b) thus show the numbers
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Fig. 4. (a) Results for the Alarm network. (b) Results for the Oesoca network. Shown are the

numbers of spurious edges in the skeleton built using zero- and first-order dependence tests.

of spurious edges in the skeletons constructed for the Alarm and Oesoca networks, re-
spectively. Figure 4(b) especially illustrates the tradeoff between recovering (almost)
all edges of the true skeleton and excluding spurious ones. We further observe that the
landscapes of the Figures 3(b) and 4(b) are not monotonically increasing or decreasing:
Figure 3(b) reveals a valley and Figure 4(b) shows a ridge. These non-monotonicities
are caused by a very weak dependency in the Oesoca network. With higher thresholds,
the weakness of the dependency forestalls its identification, thereby hiding a true neigh-
bour. Upon lowering the threshold, however, the neighbour is identified and thereby
effectively changes the separation graph, which causes the observed ridge and valley.

Since we used virtual datasets, we precluded from our experiments the effects of
sampling error. The Figures 3 and 4, therefore, give insight in the ability of our approach
to construct a skeleton that is already close to the true skeleton, under the assumption
that the dataset used perfectly captures the probability distribution to be recovered. The
figures reveal that, under this assumption, most dependences are recovered with small
threshold values, giving rise to good skeletons. We found, however, that carefully hand-
crafted, real-world networks may embed very weak dependences that would require
high thresholds for their recovery from data.

4.3 Use of x> with Sampled Datasets

The last, and most realistic situation that we address, involves datasets that were gen-
erated by means of logic sampling from a network under study. We recall that we used
such datasets in our main experiments described in Section 3. We observe that sampled
datasets differ from virtual datasets in two important aspects. Firstly, generated datasets
show the effects of sampling errors, that is, the distribution observed in the dataset may
differ slightly from the original distribution. Secondly, as generated datasets are finite,
the dependence test used can fail to reliably establish dependence or independence. In
our experiments, we adopted the common rule of thumb that the result of the 2 test can
be considered reliable only if all cells in the contingency tables have expected frequen-
cies larger than five. As before, we compared the skeletons computed from the sampled
datasets against the true skeletons of the Alarm and Oesoca networks. The numbers of
missing and additional edges are summarised only briefly due to space restrictions.
The differences between the true skeletons and the skeletons constructed from the
sampled datasets, strongly depended upon the sizes of the dataset used and upon the
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thresholds employed. For low thresholds, the differences found were relatively mod-
est. For example, with datasets of size 10000 sampled from the Oesoca network and
with thresholds equal to 0.05, the average number of edges missing from the computed
skeleton was 3; the average number of additional edges was 81. With virtual datasets
of the same size, these numbers were 2 and 59, respectively. With smaller datasets,
these differences became larger. For example, with datasets of size 250, using the same
thresholds, the average number of edges missing from the computed skeletons was 23.6;
the average number of additional edges was 86.2. With virtual datasets of the same
size, we found these numbers to be 11 and 22, respectively. The thresholds used were
found to have a much stronger impact on the numbers of missing and additional edges.
With datasets of size 2000, for example, raising the thresholds from g = & = 0.05 to
& =0.1,& = 0.4 served to double the size of the resulting skeleton.

From the above observations, we conclude that in realistic situations the thresholds
used with the dependence test should be set of a relatively low value since using more
liberal thresholds would result in an unfavourable tradeoff between the size of the re-
sulting skeleton and its number of missing edges. We further conclude that sampling
error can cause substantial deviations of the computed skeleton from the true one.

5 Discussion

Most state-of-the-art algorithms for learning Bayesian networks from data build upon
either the use of (in)dependence tests or the use of a quality measure and search algo-
rithm. While important progress has been made with both approaches, we have argued
that there are some obstacles to their practicability. Within the first approach, for ex-
ample, the statistical test employed quickly becomes unreliable for larger conditioning
sets. The second approach suffers from the huge space of graphical structures to be
traversed. We have proposed a novel approach that combines the main advantages of
these earlier algorithms yet avoids their difficulties. In the first phase of our approach,
we use zero- and first-order dependence tests to build an undirected skeleton for the net-
work under construction. This skeleton is used to explicitly restrict the search space of
directed graphical structures to promising regions. Then, a search algorithm is used to
traverse the restricted space to find a high-quality network. Our approach is general in
the sense that it can be used with various different dependence tests, quality measures,
and search algorithms. We have demonstrated the feasibility of our approach by means
of experiments with two specific instances. These instances have shown good perfor-
mance on datasets of various sizes generated from two real-world Bayesian networks.
The good performance of even a simple hillclimber within our approach suggests
that the restriction of the search space of graphical structures by means of a skeleton
is safe, in the sense that it is not likely to prune high-quality networks. To corroborate
this observation, we have compared the computed skeletons against the true skeleton
in varying situations. Using virtual datasets for the well-known Alarm network, skele-
tons without any missing edges and with up to twenty extra edges have been found,
using very small thresholds for the dependence tests. Except for its three weakest de-
pendences, also all edges from the true skeleton of the Oesoca network have been re-
covered with small thresholds; the numbers of extra edges for the skeletons computed
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from virtual datasets of various sizes range between 20 and 70. We conclude that the
use of a skeleton provides for a careful balance of accuracy and a tractable search space.

To conclude, we would like to note that the Oesoca network includes a dependence
that is weak in general yet becomes very strong for patients in whom a relatively rare
condition is found. This dependence is important from the point of view of the appli-
cation domain, although for the learning task it is indistinguishable from the numerous
irrelevant dependences found in the data. Since there is always a tradeoff between con-
sidering weak dependences that may be important and the computational resources one
is willing to spend, we feel that learning a Bayesian network from data should always
be performed in close consultation with a domain expert.
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