Abstract
Many optimization algorithms that imitate certain principles of nature have been proven useful in various application domains. The following paper shows how Evolutionary Algorithm (EA) can be applied to model (program) construction for solving the discrete time system identification problem. Non-linear system identification is used as an example problem domain for studying possibilities of EA to discover the relationship between parameters in response to a given set of inputs.
This work is partially supported by the Estonian Science Foundation under grant No 5567.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. IOP Publ. Co. & Oxford University Press (1997)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming. In: An Introduction On the Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann Publishers, Inc., San Francisco (1998)
Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)
Tyugu, E.: Knowledge-Based Programming. Addison-Wesley Publishing Company, Inc, Reading (1988)
Söderström, T., Stoica, P.: System Identification. Prentice Hall International, London (1989)
Tan, K.C., Li, Y., Murray-Smith, D.J., Sharman, K.: System identification and linearisation using genetic algorithms with simulated annealing. In: First Int. Conf. On CALESIA. University of Sheffield, UK (1995)
Kristinsson, K., Dumont, G.A.: Genetic Algorithms in system identification. In: Third IEEE Int. Symp. Intelligent Contr., Arlington, VA, pp. 597–602 (1988)
Iba, H.: System identification using structured genetic algorithms. In: Handbook of Evolutionary Computation, vol. G1.4, pp. 1–11. IOP Publ. Co. & Oxford University Press (1997)
Kotta, Ü., Nõmm, S., Chowdhury, F.N.: On a new type of neural-network-based input-output model: the ANARMA structure. IFAC (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sanko, J., Penjam, J. (2004). Program Construction in the Context of Evolutionary Computation. In: Broy, M., Zamulin, A.V. (eds) Perspectives of System Informatics. PSI 2003. Lecture Notes in Computer Science, vol 2890. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39866-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-39866-0_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20813-6
Online ISBN: 978-3-540-39866-0
eBook Packages: Springer Book Archive