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Abstract. One of the most important performance measure for real
time applications is the packet loss probability. In a wireless environment
losses are first due to noisy channels (fading, shadowing etc). In order
to improve the radio link, one often retransmits packets that have not
been well received (using the Automatic Retransmission reQuest - ARQ).
This however may lead to queuing phenomena due to retransmissions
and to losses of packets due to buffer overflow. We present a queuing
analysis in order to compute the combined effect of the noisy channel,
the retransmissions and the buffer overflow. We use advanced spectral
methods of quasi-birth and death process in order to analyze the system
for general multistate Markov channels and provide an approximation
approach based on the theory of singular perturbation.

1 Introduction

The study of the performance of wireless channels and their effect on the quality
of service is a major research issue as it provides tools for design of link layer
protocols and dimension link layer buffers, see e.g. [12,13] and references therein.
We study in this paper wireless channels that use retransmission of lost packets:
the Automatic Retransmission reQuest (ARQ) protocol. We note however that
retransmissions cause extra delay which results in larger queues and therefore in
possible losses due to buffer overflow. In order to study both the delay statistics
as well as the global loss process, we provide a queuing analysis of the radio link.

Our starting point is a link model provided in [12]. The radio channel con-
sidered in [12] is modeled using a two state Markov chain: a perfectly “good”
state in which transmission succeeds with probability one, and a perfectly “bad”
state in which transmission fails with probability one. Our first goal is to allow
for a much more rich class of models for the channel state. The need for richer
models is motivated by the following considerations:

– It has been shown in [9,11] that more than two states are needed for de-
scribing some radio channels; in fact it was shown that one needs typically
at least four states.

– Even in the “best” channel state it might be too optimistic too expect losses
to occur with probability zero. Conversely, it may be too pesimistic to assume
that in a bad state all packets are systematically lost.
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– Assume that for a given packet loss probability p we assign a single state of
the channel. This means (if a discrete time model as in [12] is used) that the
time during which a packet suffers a loss probability of p has a geometric
distribution. If we wish to be able to model other distributions then more
than one state should be assigned to a given loss probability!

Our analysis approach is based on modeling of the system as a two dimen-
sional Markov chain, where the first corresponds to the channel state and the
second to the number of packets queued at the buffer. In order to obtain the
steady state distribution of this system we make use of recent advanced spec-
tral methods of analysis of quasi birth and death (QBD) processes [5,6]. These
methods allow us to represent the steady state solution as a simple function of
the eigenvectors and eigenvalues of some matrices. For the case that the channel
is described by a two dimensional chain, we obtain an explicit solution which has
not been available in [12] even for the simpler special case of “perfectly” good
and “perfectly” bad channel states.

The second objective of the paper is to study a singular perturbation solution
approach for approximating the steady state solution. This approach allows to
obtain simple approximations for the case that the channel state evolves much
slower than the queue size. In fact, if the speed ratio is given by a parameter
ε, then the singular perturbation approach allows to represent the steady state
probabilities as a Taylor series of ε. The first term in the series already gives
a very good approximation when ε is sufficiently small, and this term is much
simpler to compute than by using the previous exact approach.

The structure of the paper is as follows. We present the model in section 2.
Section 3 provides a detailed spectral analysis and give the steady state channel-
queue length for the finite queue model. We concluded by sample numerical
results. In section 4 We study a singular perturbation solution approach for
approximating the steady state solution and we compare the two methods pre-
sented in section 3 and section 4 by numerical results.

2 Model

We consider the following queuing system. In each slot, a packet is generated at
the transmitter according to a Bernoulli process with arrival probability p > 0.
The channel state can be described by the variable l ∈ E := {1, 2, .., L}, where
l = i denote that the packet can be transmitted with probability qi, with qi ∈
[0, 1]. If a transmission fails we assume that it will be attempted again in the next
time unit. As in the first model studied in [12], we assume that the number of
retransmissions of a packet by the ARQ protocol is not bounded: retransmissions
will be attempted until a success.

Λ =

⎛
⎜⎜⎜⎝

λ11 λ12 · · · λ1L

λ21 λ21 · · · λ2L

...
...

...
...

λL1 λ22 · · · λLL

⎞
⎟⎟⎟⎠ (1)
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be the transition matrix for the error process, where
∑L

j=1 λij = 1. We shall
denote ν = [ν1, ν2.., νL] the probability distribution of the transition matrix Λ.
We assume throughout that Λ is irreducible and aperiodic.

The state of the system at time n is described by X(n) = (l(n), i(n)), where
l(n) is the state of channel in slot n and i(n) is the number of packets in the
queue at the beginning of slot t. The arrival process in slot m is independent of
X(n) for all m ≥ n. Arrivals are assumed to occur at the end of the slot so that,
in particular, they cannot depart in the same slot.

The system has a finite queue of size B. A loss occurs whenever an arriving
packet finds the queue full. It can be shown that the Markov channel evolution
and the assumption of independent arrivals imply that X(n) is a Markov chain
with value in a finite state space B = {(i, j), i = 1, ..L, j = 0, .., B}

Since we consider discrete time, we have to make some convention on the
order of events within each time unit. We assume that at each time unit, if the
queue is nonempty then first a transmission is attempted, and only if it succeeds
then there is a departure; then if there have been an arrival during the slot
then it joins the queue. We call this a service-arrival order. This order means in
particular that if the queue is full at the beginning of the slot then an arriving
packet during the slot need not be lost: it is only lost if the transmission has
failed.1

The transition probability L(B + 1) × L(B + 1) matrix of the Markov chain
X(n) are given by

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 B1 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0 0 · · ·
...

. . . . . . . . . . . .
...

. . . . . . . . . A1 A0
0 . . . 0 A2 F1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

0
1
...
...
...
B

P consists of B + 1 block rows and block columns. The matrices B0, B1, A0,
A1, A2, and F1 are all L × L non-negative matrices, where B0 = p̄Λ, B1 =
pΛ,A0 = diag(pq̄i, i = 1, , .., L)Λ, A1 = diag(pqi + p̄q̄i, i = 1, .., L)Λ, A2 =
diag(p̄qi, i = 1, .., L)Λ and F1 = diag(pqi+ q̄i, i = 1, .., L)Λ. Since Λ is irreducible
and aperiodic, and since p > 0, the Markov chain X(n) is aperiodic and it
contains a single ergodic class. Hence it has a unique stationary (or steady state)
probability distribution defined as

π(i, j) = lim
n→∞ Pr(l(n) = i, i(n) = j); i = 1, 2, .., L; j = 0, 1, .., B

1 If in contrast, a real system operates in the arrival-service order i.e. first an arrival
occurs (and is lost if the queue is full) and then a transmission is attempted, then
the expressions for the steady state probability obtained for the service-arrival order
are still valid but they apply to the state of the queue just after the arrival occurred
in the arrival-service order system. From this it is then easy to derive the steady
state distribution at the beginning of a time slot.
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The objective of this analysis is to determine the blocking probabilities, the
expected delays, and in fact the whole probability distribution π(i, j) in terms
of the parameters of the system. π(i, j) is the unique solution to the equation

π = πP, πēL = 1 (2)

where the notation ēk, k ≥ 0 is used to denote a column vector of ones of length
k(B+1). For convenience, we partition the stationary vector π as [π0, π1, ..., πB ],
where πk of size 1 × L, will called the solution vector of level k, 0 ≤ k ≤ B.

3 Analysis of the System

3.1 Spectral Analysis

In the analysis a special role is played by the number of states of the server for
which the transmission probability is zero or one. We denote these numbers by

m0 := |{i : qi = 1}|, m2 := |{i : qi = 0}|

The structure of the transition probabilities would be similar to the one
studied [6] if we did not have the first row and column. We handle this problem
by reducing the state space, by removing the level zero and in the second phase,
we construct the stationary probability of the reduced chain by using the spectral
analysis. This will allow us to obtain the steady state probabilities of the original
system.

Let B1 be subset of B, where B1 = {(i, j)/i = 1, .., L; j = 1, .., B}. We define
the restricted process {X0

n, n ≥ 0} as follows: X0
n = X(sn) for n ≥ 0, so that X0

n

is the actual state visited when the Markov chain is not for the nth time in level
0.

Lemma 1. The restricted precess X0
n is an irreducible positive Markov chain on

the state B1. Its transition is given by

P 0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 A0 0 · · ·
A2 A1 A0 0 · · ·
0 A2 A1 A0 0 · · ·
...

. . . . . . . . . . . .
...

. . . . . . . . . A1 A0
0 . . . 0 A2 F1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2
...
...
...
B

where C1 := A1+A2(I−B0)−1B1. Its stationary probability vector is proportional
to π0 := [π1, π2, .., πB ], i.e., we have that π0P 0 = π0.

Proof See Lemma 10.1.1 in [8].
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The matrix C1 records the probability, starting from the level 1 of returning
to the level 1, before reaching the level 2. The lemma implies that the stationary
probability vector may be determined by the following equations:

π0 = π0
1A2(I − B0)−1, π0

1 = π0
1C1 + π0

2A2, (3)
π0

i = π0
i−1A0 + π0

i A1 + π0
i+1A2, π0

B = π0
B−1A0 + π0

BF1, πēL = 1 (4)

If
∑L

i=0 νiqi �= p, then the steady-state probability vector can be written as
a sum of two matrix-geometric terms,

π0
j = x1R

j−1 + xLSB−j , j = 1, 2, .., B (5)

where the rate matrices R and S are respectively the minimal nonnegative so-
lutions to the quadratic matrix equations (for details see Naomov [5]).

A0 + R(A1 − I) + R2A2 = 0, S2A0 + S(A1 − I) + A2 = 0 (6)

Next we provide a simpler representation of (5). To that aim we introduce some
definitions and two Lemmas. Define the quadratic matrix polynomials T (z) and
T̄ (z):

T (z) := A0 + z(A1 − I) + z2A2, T̄ (z) := A2 + z(A1 − I) + z2A0 (7)

The solution (3)-(4) is closely related to the roots and the left nullvector of T (z).
Let (α, u) be a root-nullvector pair of T (α), thus satisfying the equation

uT (α) = 0, det[T (α)] = 0 (8)

We observe that the non-zero roots of det[T (z)] are the reciprocals of non zero
roots of det[T̄ (z)] with the same corresponding left nullvector. We shall analysis
the nature of the roots and the nullvectors of T (z)

Lemma 2. 1. If α is an eigenvalue of R with algebraic multiplicity m, then α is
a root of the polynomial det[T (z)] and its multiplicity is at least m. And if u is
an eigenvector of R corresponding to the eigenvalue α, then u is a left nullvector
of T (α).
2. If α �= 0 and 1/α is an eigenvalue of S with algebraic multiplicity m, then
α is a root of the polynomial det[T (z)] and its multiplicity is at least m. And
if u is an eigenvector of S corresponding to the eigenvalue 1/α, then u is a left
nullvector of T (α).
3. The left nullspace of R and A0 coincides, and so do the left nullspace of S
and A2

Proof See the full of the paper [4].

Remark 1. Recall m0 and m2 are the number of state i ∈ {1, 2, .., L} for which
qi = 1 and qi = 0. Then after some permutation of the rows in matrix Ai,
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i = 0, 2, the matrix Ai i = 0, 2 can be writing as the following block triangular
matrix2

Ai =
(

A1
i A2

i

0 0

)
(9)

The eigenvalues of Ai, i = 0, 2 are those of A1
i with those of matrix null 0 ∈ Mmi ,

counting multiplicities. Then if A1
i , i = 0, 2 has eigenvalue zero with multiplicity

ni, 0 is eigenvalue of Ai with algebraic multiplicity ri where ri = mi+ni, i = 0, 2.

In the sequel, we assume that the sum of all principal minus of T (z) of order
L − n0 is nonzero. We deduce from these results the following

Lemma 3. (i)- The polynomial det[T (z)] has a root with geometric multiplicity
r0 located at z = 0, and (ii)- 2L− r0 − r2 roots. For their location we distinguish
two cases:
1. If p <

∑L
i=1 νiqi, L−r0 of them lie in disc |z| < 1, one at z = 1, and L−1−r2

in disc |z| ≥ 1 with z �= 1.
2. If p >

∑L
i=1 νiqi, L − 1 − r0 of them lie in disc |z| < 1, one at z = 1, and

L − r2 in disc |z| ≥ 1 and z �= 1

Proof see the full version of the paper [4]
Now, we return to the steady-state for the restricted process X0

n. It was
already showed that the matrices R and S have a full set of eigenvectors. Con-
sequently the expression (5) can thus rewritten in spectral-expansion form :

π0
j =

L∑
k=1

βk(φk)j−1wk +
2L∑

k=L+1

βk(1/φk)B−jwk, 1 ≤ j ≤ B (10)

with φ1, .., φL the eigenvalues of the matrix R and w1, w2, .., wL the correspond-
ing left eigenvectors, and 1/φL+1, .., 1/φ2L are the eigenvalues of S with corre-
sponding left eigenvectors wL+1, .., w2L. If m2 + n2 > 0, then we set the corre-
sponding φk equal to ∞ and we write 1/φk = 0. Moreover by convention we set
00 = 1.

Here the vectors πj , j = 1, 2, .., L are know if βk’s are known. We derive
an alternative set of equations which uniquely determines the coefficients βk by
combining the relation (10) with the equations (3), (4) and the normalization
condition.

3.2 Examples and Numerical Results

In the full version of the paper [4], we illustrate how to apply this method to a
channel that can be described by two states.
2 Suppose that there exists i ∈ {1, 2, .., L} such that qi = 0 (resp qi = 1). Then all

entries in row i of the matrix S (resp R) equal 0, so that 1i with the ith entry equal
to 1 and all other entries equal to 0 is a left nullvector of S (resp R), Indeed, when
the state of server is i in which qi = 0, no packet can be transmitted. Hence starting
from (j, i), ∀j, no state state of level j − 1 can ever be visited before another state
in the level j is visited.



A Queuing Analysis of Packet Dropping 327

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.1 0.2 0.3 0.4
Arrival probability  p

Fig. 1. The dropping probability of a
packet as function of the arrauval proba-
bility p for q1 = 1, q2 = 0, λ11 = 0.3,
λ22 = 0.5 and buffer size B = 6
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Fig. 2. The dropping probability of a
packet as function of the arrival probability
p for q1 = 1, q2 = 0.2, λ11 = 0.3, λ22 = 0.5
and buffer size B = 6
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Fig. 3. The dropping probability of a packet as function of the arrival probability p for
q1 = 1, λ11 = 0.3, λ22 = 0.5 and buffer size B = 10 and q2 = 0, 0.01, 0.03

Numerical investigation. In this paragraph, we present some numerical re-
sults obtained based on the analysis described in previous section 3. We inves-
tigate the relationship between the dropping probability and arrival rate p. In
particular, we compare the values of the performance measures for two different
schemes: The first schemes is perfectly good/absolutly bad state in which the
transmission succeeds with probability 1 or 0, and second scheme is a perfectly
good/fairly bad in which the transmission succeeds with probability 1 or 0.2.

In figures 1 and 2, the dropping probability is plotted versus the arrival rate
for first scheme (resp. scheme 2).

As shown in figure 1-2, the performance measures (dropping probability) for
two schemes are different. It is true that the modification on the transmission in
bad state will influence the performance , but more surprisingly, the difference
between the performance measures is of the order 10−1. This actually confirms
that using the simple model of scheme 1 (e.g. [12,14,13]) does not adequately
capture the process of packet errors. In order to verify this, we calculate the
performance measures with a small change in the transmission probability q2
in the region near 0 for scheme 1 (see figure 3), we observe a large effects on
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the performance measures when the arrival rate is more than 0.3. From this
observation, it is clear that the values of the transmission probabilities have an
important role to model the process packet errors. We conclude that we have to
be careful when using the simplify model to represent the wireless the analytic
system.

4 Approximations Using Singular Perturbation

4.1 Preliminaries

Singular perturbation is a powerful approach do obtain simple approximation
of steady state probabilities of Markov chains in which we can identify two
time scales: there are several group of states such that there are rare transitions
between groups and frequent transitions within each group (see e.g. [2,3,10]) We
shall apply this method to the case when the transitions of the queue size occur
much more frequently than those of the channel states. This will typically be
the case in high speed channels. The singular perturbation approach can also be
useful for the opposite case in which the channel states evolve much faster than
the queue size process.

We thus represent the transitions of the channel state as Λ(ε) = I + εΛ1
where Λ1 is a generator (so that Λ(ε) represents indeed transition probabilities)
and ε is a small parameter. Hence the transition matrix of the Markov chain
X(n) becomes

P (ε) = Q0 + εQ1

where Q0 is the probability transition matrix of the unperturbed Markov chain
corresponding to strong interaction, and Q1 is the generator corresponding to
weak interaction, i.e.,

Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̄I pI 0 · · ·
Ā2 Ā1 Ā0 0 · · ·
0 Ā2 Ā1 Ā0 0 · · ·
...

. . . . . . . . . . . .
...

. . . . . . . . . . . . Ā0
0 . . . 0 Ā2 F̄1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̃0 B̃1 0 · · ·
Ã2 Ã1 Ã0 0 · · ·
0 Ã2 Ã1 Ã0 0 · · ·
...

. . . . . . . . . . . .
...

. . . . . . . . . . . . Ã0

0 . . . 0 Ã2 F̃1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where Ā2 = diag(p̄qi, i = 1.., L), Ā1 = diag(pqi + p̄q̄i, i = 1.., L), Ā0 =
diag(pq̄i, i = 1.., L), F̄1 = diag(pqi+q̄i, i = 1.., L), B̃0 = p̄(Λ1), B1 = p(Λ1), Ã2 =
diag(p̄qi, i = 0, 1.., L)Λ1, Ã1 = diag(pqip̄q̄i, i = 1.., L)Λ1, Ã0 = pdiag(pq̄i, i =
1.., L)Λ1, and F̃1 = diag(pqi + q̄i, i = 1.., L)Λ1.

Let πε(k, i), i = 1..L, j = 0, 1, .., B, be the probability distribution of the
state of the channel and the number of packets in the system in steady-state.
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This is exactly the perturbation problem under the assumption that there exists
a ergodic class (i.e., has exactly one closed communicating set of states), and Q0
contains L subchains.

The partition of state set of Markov chain associated with the probability
matrix Q0 depends of the number of service for which the transmission proba-
bility is zero or one. Indeed, if m0 = m2 = 0, the L recurrent classes ξi, i = 1, , L
are given by

ξi = {(i, j), j = 0, 1, ..B}

and the unperturbed chain admits no transient state (block diagonal structure).
Now if m0 > 0 or m2 > 0, let EB = {i/ qi = 0} and EG = {i/ qi = 1}.
In this case, the L recurrent classes are given by : ξi = {(i, 0), (i, 1)} if i ∈
{j/ qj = 1}, ξi = {(i, B)} if i ∈ {j/ qj = 0} and ξi = {(i, j) j = 0, 1, ..B}
otherwise. The set of transient states T is given by T = {(i, j)/j �= 0, 1 and qi =
1} ∪ {(i, j)/j �= B and qi = 0}. Without loss of generality, the channel state in
which the transmission probability is zero or one, are described by the variable
l ∈ {1, .., r0} where r0 = m0 + m2.

4.2 Taylor Series Expansion for Steady State

The above assumptions still implies that the stationary probability πε has the
following property

Lemma 4. The stationary probability πε of the perturbed chain has a Taylor
series expansion : πε =

∑∞
n=0 π(n)εn. Moreover π(n), n ≥ 0 are recursively

calculated as follows:

π(0)[I − Q0] = 0,
∑
(i,j)

π(0)(i, j) = 1 (11)

π(n)[I − Q0] = π(n−1)Q1,
∑
(i,j)

π(n)(i, j) = 0 (12)

Proof see Schweitzer [10],
We consider the unperturbed Markov chain associated with the transition

probability matrix Q0. There exists a partition of states set of Markov chain X(n)
into of family of L recurrent classes ξi, i = 1, .., L. To each class ξ̄ is associated
the invariant measure (row vector) mξ̄ of the recurrent subchain defined on the
class ξ̄ ∈ S̄ = {ξ1, .., ξL}.

Let us consider the natural numbering the states of B after the grouping de-
fined by the partition S̄. With this numbering, the transition probability matrix
Q0 has the following block structure:
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Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

. . . . . .
Pr 0 · · · 0 0 · · · 0

0 · · · Pr+1 · · · 0 0 · · · 0
. . .

...
...

. . .
...

. . .
0 · · · 0 0 0 PL 0 · · · 0
F1 · · · 0 0 · · · 0 Y1 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · Fr 0 · · · 0 0 · · · Yr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where we distinguish three cases : For i �∈ {1, .., r}, Pi is a (B + 1) × (B + 1)
matrix :

Pi =

⎛
⎜⎜⎜⎜⎜⎜⎝

p̄ +p · · ·
p̄qi pqi + p̄q̄i pq̄i 0

0
. . . . . . . . .

...
. . . pqi + p̄q̄i pq̄i

0 · · · p̄qi pqi + q̄i

⎞
⎟⎟⎟⎟⎟⎟⎠

For i ∈ EG, Pi is 2 × 2 matrix, Fi is (B − 1) × 2 and Yi is a (B − 1) × (B − 1)
matrix :

Pi =
(

p̄ p
p̄ p

)
, Fi =

⎛
⎜⎜⎜⎜⎝

0 p̄
... 0

...
0 0

⎞
⎟⎟⎟⎟⎠ , Yi =

⎛
⎜⎜⎜⎝

p 0 · · · 0
p̄ p · · · 0
...

. . . . . .
0 · · · p̄ p

⎞
⎟⎟⎟⎠

For i ∈ EB , the matrix Pi = 1, Fi is a B vector given by FT = (0, .., 0, p) and
Yi is a B × B matrix, where

Yi =

⎛
⎜⎜⎜⎜⎝

p̄ p · · · 0

0
. . . . . . 0

... · · · p̄ p
0 · · · 0 p̄

⎞
⎟⎟⎟⎟⎠ .

Let us define the matrix Q̄1 = (Q̄1)ξξ′ by: (Q̄1)ξiξ′
j

:=
∑B

k=1 mξi(k)∑B
k′=1(Q1)(i,k),(j,k′). We note that Q̄1 is a generator of an aggregated Markov

chain on a state space S̄. Now let ν̄ = [ν̄1, .., ν̄L] the probability distribution of
the aggregated Markov chain. Note in view of definition of Q̄1, we observe that
the generator of aggregated Markov chain is Λ1. Hence ν̄ is the unique stationary
distribution of ergodic Markov chain l(n), i.e.,

ν̄Λ1 = 0, ν1 = 1. (13)
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Following Delebecque[3], the unperturbed stationary probability is given by

π(0)(i, j) = ν̄imξi(j) (14)

where mξi is the probability distribution of the recurrent class which given by
the following lemma.

Lemma 5. For each i = 1, 2, .., L, the stationary distribution mξi
of recurrent

class ξi is given by:
1- If i �∈ EG ∪ EB, mξi(j) = pj(1−qi)j−1

qj
i
(1−p)j

mξi(0), j = 1, .., B, where mξi(0) =
qi−p

qi−pαB with α = p(1−qi)
qi(1−p) .

2- If i ∈ EG, mξi
(0) = 1 − p and mξi

(1) = p.
3- If i ∈ EB, mξi(B) = 1.

Proof see the full version of the paper [4].
We shall denote qξi the right eigenvector corresponding to the one eigenvalue

of the matrix Pi. Recall that the right eigenvector provide the probability to end
in the class ξi starting from i. In our model, the vector qξi

is given as follows:
For each j = 0, 1, .., B, qξi(k, j) = 1, if k = i and qξi(k, j) = 0 otherwise.

Following the analysis in [1, Chap. 3], we can obtain the stationary distri-
bution of the perturbed system by another equivalent system with the matrix
coefficients of smaller dimension.

Theorem 1. A solution of the equations (11)-(12) with the normalization con-
ditions is given by the following recursive formulae:
1. π(0) = ν̄M , where ν̄ is the stationary distribution of aggregated Markov chain
Λ1 ∈ IRL+1×L+1 and M ∈ IR(L+1)×(L+1)(B+1) is a matrix whose rows are sta-
tionary distribution of the Markov chain Q0 and N ∈ IR(L+1)(B+1)×(L+1) is a
matrix of eigenvectors corresponding to the zero eigenvalue of the unperturbed
generator Q0 − I.
2. π(n) = π(n−1)Q1H0 + π

(n)
1 M, π

(0)
1 = ν, π

(n)
1 = π

(n−1)
1 MQ1H0Q1NH1,

where H0 is a deviation matrix of the unperturbed Markov chain H0 = [I −
Q0 + NM ]−1 − NM and H1 is a deviation of the aggregated Markov chain
H1 = [−Λ1 +Λ∗]−1 −Λ∗, where Λ∗ is the ergodic projection of transition matrix
Λ − I, i.e., Λ∗ = µLν, with µL = [1, .., 1]T ∈ IRL+1.

Observe that the stationary distribution is obtained here more efficiently
than by using the spectral analysis given in section 3. In this reduced system,
we need only to compute the stationary distribution of aggregated Markov chain
Λ since the stationary distributions of each recurrent class of the unperturbed
matrix transition Q0 are given by Theorem 1.

4.3 Examples and Numerical Results

Consider the same example as the one presented in subsection 3.2. Also without
loss of generality, we assume that q1 �= q2. Since the channel state describes
by two states, the Markov chain associated with probability matrix Q0 has 2
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. . . . approximate  solution
 ____ exact solution
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Fig. 4. Dropping probability versus arrival
probability for ε = 10−3, a = 1/5, b = 1/2,
q1 = 1 , q2 = 0 and B = 5. Comparison of
two methods: spectral analysis (exact so-
lution) and approximate solution.

. . . . approximate  solution
 ____ exact solution
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Fig. 5. Dropping probability versus arrival
probability for ε = 10−3, a = 1/5, b = 1/2,
q1 = 1 , q2 = 0.2 and B = 30. Comparison
of two methods: spectral analysis (exact so-
lution) and approximate solution.

recurrent classes and transient states if m0 > 0 or m2 > 0. The stationary
probability distribution of the aggregated Markov chain Λ1 is given by ν̄1 =

b
a+b , ν̄2 = a

a+b , where Λ1 =
(−a +a

b −b

)

Now, we are going to illustrate how to apply this method and obtain a simple
approximation for steady state solution. This approximation can be presented
by first term in the Taylor series of ε in which the first term is given by π(0) =

[ν̄1, ν̄2]
[

mξ1

mξ2

]

In figures 4-5 we compare the dropping probability for various values of the
buffer size and for a = 1/5, b = 1/2, q1 = 1 and q2 = 0.2, as obtained via the
two methods presented in section 3 and section 4.

From plots in figures 4-5, we observe that the first term in the Taylor series
gives a good approximation when ε is small (ε = 10−3). Moreover, we observe
that when the buffer size increases the error between the exact solution and the
approximation solution increases. An intuitive explanation is as follows: when
we use the first term of the Taylor series, we get the limiting behavior as ε
tends to zero, i.e. as the transitions of the queue sizes occur much faster than
the transitions of the channel state. However, as the buffer size increases, the
probability of reaching its boundaries become smaller (it converges to zero when
the buffer size converges to infinity for the arrival probability that we chose)
which means that the time between transitions to the state of full queue do not
occur much faster than the transitions of the channel state.
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