
TAPI: Transactions for Accessing Public Infrastructure

Matt Blaze1, John Ioannidis1, Sotiris Ioannidis2, Angelos D. Keromytis3,
Pekka Nikander4, and Vassilis Prevelakis5

1 AT&T Labs – Research
{mab,ji}@research.att.com

2 CIS Department, University of Pennsylvania
sotiris@dsl.cis.upenn.edu

3 CS Department, Columbia University
angelos@cs.columbia.edu

4 Nomadic Lab
pekka.nikander@nomadiclab.com
5 CS Department, Drexel University

vp@drexel.edu

Abstract. This paper describes TAPI, an offline scheme intended for general
Internet-based micropayments. TAPI, which extends and combines concepts
from the KeyNote Microchecks and OTPCoins architectures, encodes risk man-
agement rules in bank-issued users’ credentials which are in turn used to acquire
small-valued payment tokens. The scheme has very low transaction overhead and
can be tuned to use different risk strategies for different environments and clients.

Keywords: Micropayments, trust management, wireless networks, access control

1 Introduction

Traditional electronic payment systems impose a low bound on the value of each transac-
tion due to the associated processing and clearing overhead. For small-value transactions,
this overhead dominates the value of the transaction itself, making the use of such a sys-
tem uneconomical. Various schemes have been proposed, aiming to reduce overheads
so as to handle payments of fractions of a cent. These systems must cope with problems
of scale, risk, and trust. It is important to have mechanisms that can scale to millions of
transactions while maintaining acceptable levels of risk.

However, cryptographic and other computational operations have non-negligible
cost. Thus, we need to minimize the crypto operations by aggregating them in larger
transactions. Our observation is that we can take advantage of any locality of reference
exhibited by micropayments, i.e., a user paying for a service from a web site is more
likely to purchase additional services from the same site. For applications where this
holds, we can amortize the cost of many micropayments over a larger payment.

We present a mechanism that allows multiple partial charges against a payment au-
thorization. By splitting a micropayment transaction into a number of partial transactions
(minipayments) for smaller amounts, up to the amount of the original micropayment, we
can accommodate multiple purchases within the original (single) transaction. Thus, we

M. Conti et al. (Eds.): PWC 2003, LNCS 2775, pp. 90–100, 2003.
c© IFIP International Federation for Information Processing 2003

TAPI: Transactions for Accessing Public Infrastructure 91

spread the cost of the transaction over a number of distinct purchases.A similar approach
is being used by some vendors: multiple small credit card transactions are aggregated
and presented as a single transaction to the credit card company. Typically, special agree-
ments that cover liability and specify dispute handling policies need to be in place before
this can be used. We built a system where dispute handling can easily be managed, i.e.,
the merchant or the user can prove (or disprove) that a particular minipayment occurred,
and thus limit the exposure to fraud.

We discuss a case study involving per-packet charging in a wireless network. In
Section 2, we describe the background for our case study and arrive at the requirements
for the charging scheme. We then describe the key features of our partial micropayment
architecture by presenting a detailed example, namely a microcheck payment framework
that is based on the KeyNote [1] trust-management system and a mechanism for making
partial payments from a single microcheck. We briefly discuss our implementation in
Section 3, and give an overview of related work in Section 4.

1.1 Motivation

The massive reduction in cost of wireless LAN (WiFi) base-stations has resulted in the
gradual deployment of wireless LANs in public places by commercial operators, who
want to charge for access. In most existing installations, the user must establish credit
with the site operator (usually through a Web portal) before being allowed access to
the network. As the density of WiFi coverage increases, the requirement for separate
authentication with each provider becomes more onerous. Ideally, the user should be
able to move between WiFi networks and access the Internet with authentication and
payment done automatically. The rigidity of current payment methods (including the
inability of the payment infrastructure to handle small payments) forces the network
operators to charge for access in large time slots (e.g., on a daily or weekly basis). The
use of micropayments would allow the operator to be much more flexible. For example,
the operator may wish to charge for each packet sent or received by the user.

Even if operators do not charge real money for the services offered, it is sometimes
desirable to have some type of accountability, to detect infrastructure abusers (to avoid the
“tragedy of the commons”). Such schemes still depend on some type of user registration
and accounting; the missing part is the translation to the real-world concepts (i.e., money).
A micropayment scheme with “play” money can be used to provide this accountability.
In order to be able to perform this type of charging, we need a system that satisfies the
following requirements: First, it must be able to handle very small payments. Second, it
should not require a user-initiated login procedure; instead, be able to receive payment
dynamically. Third, it should not require on-line authentication with the user’s credit
institution in order to minimize connection overhead and accommodate situations where
the user’s credit institution is temporarily inaccessible.

To satisfy these requirements, we employ two different techniques: (a) The KeyNote
trust-management System that establishes trust between the user, the service provider
and the user’s credit institution, using the architecture we originally described in [2], and
(b) we introduce the concept of OTP Coins that allow single microchecks to be broken
into smaller payment increments. We present these two techniques in detail.

92 M. Blaza et al.

PAYER

CLEARING

Vendor’s BankPayer’s Bank

PROVISIONING
(Check Guarantor)

VENDOR

Fig. 1. Microbilling architecture diagram. We give the generic terms for each component, and
in parentheses the corresponding players. Arrows represent communication between two parties:
Provisioning issues credentials to Payers and Merchants; these communicate to complete transac-
tions; Merchants send transaction information to Clearing, which verifies the transaction and posts
the necessary credits/charges or arranges money transfers. Provisioning and Clearing exchange
status information about Payer and Merchant accounts.

1.2 KeyNote Microchecks

The micropayments system introduced in [2] forms the basis of our approach. The
general architecture of this microbilling system is shown in Figure 1. We consider an
environment where Merchants and Payers sign up for service with a Provisioning Agent
(PA). Merchants interact with Payers through the Merchant Payment Processor (MPP).
The Clearing and Settlement Center (CSC) for reconciling transactions may be a separate
entity, or may be part of the PA.

The PA issues KeyNote [1] credentials to Payers and Merchants, that describe the
conditions under which a Payer is allowed to perform a transaction, and the fact that
a Merchant is authorized to participate in a transaction. When a Payer wants to buy
something from a Merchant, the Merchant encodes the details of the proposed transaction
into an offer, which is sent to the Payer. To proceed, the Payer issues to the Merchant
a microcheck for this offer. The microchecks are encoded as KeyNote credentials that
authorize payment for a specific transaction. This credential is effectively a check signed
by the Payer and payable to the Merchant. The conditions under which this check is valid
match the Merchant’s offer. Part of the offer is a nonce, which maps payments to specific
transactions and prevents double-depositing of microchecks by the Merchant.

To determine whether he will be paid, the Merchant passes the offer description and
the Payer’s key along with the Merchant’s policy (that identifies the PA key), the Payer
credential (signed by the PA) and the microchecks credential (signed by the Payer) to his
local KeyNote compliance checker. If the compliance checker authorizes the transaction,
the Merchant is guaranteed that Provisioning will allow payment.

If the transaction is approved, the Merchant stores a copy of the microcheck along
with the payer credential and associated offer details for later settlement. Otherwise,
depending on their network connectivity, either the Payer or the Merchant can request
a transaction-specific credential that can be used to authorize the transaction. This ap-

TAPI: Transactions for Accessing Public Infrastructure 93

proach, if implemented transparently and automatically, provides a continuum between
online and offline transactions tuned to the specific risk and operational conditions.

Periodically, the Merchant will ‘deposit’ the microchecks and associated transaction
details to the CSC, which may or may not be run by the same entity as the PA, but must
have the proper authorization to transmit billing and payment records to the PA for the
customers. The CSC receives payment records from the various Merchants; these records
consist of the Offer, the KeyNote microcheck, and the credential from the payer sent in
response. In order to verify a microcheck, the CSC goes through the same procedure as
the Merchant did when accepting the microcheck. If the KeyNote compliance checker
approves, the check is accepted and the account balances adjusted.

The main advantage of this architecture is the ability to encode risk management
rules for micropayments in user credentials. Other electronic systems have focused on
preventing fraud and failure, rather than on managing it. As prevention mechanisms are
often too expensive for micropayments, risk management seems particularly attractive.

1.3 OTP Coins

Electronic coins based on One Time Passwords (OTP) are another fundamental aspect of
our approach. While the microchecks manage the risks of single transactions, OTP coins
allow the cost of a microcheck to be distributed even more thinly, effectively making it
possible to divide a microcheck transaction into hundreds of smaller, partial transactions.
This approach is especially suitable for paying for access time, e-content, or other kinds
of “continuous” goods, i.e., goods that can be sold by some measure.

The basic approach, without microchecks, was outlined in [3]: an OPIE [4] OTP
account was sent to the Client, who used the passwords to pay for wireless Internet
access. The system was based on the IEEE 802.1x protocol, running OPIE over TLS.

When combined with microchecks, the Merchant spells out the OTP terms in the
offer, e.g., it might state he provides wireless Internet access time at $0.001 per 5 seconds
when bought in lots of 100 5 second units. That is, he offers 100 pieces of 5 second
access time units for the price of $0.1. If the Client accepts the offer, she generates a
random number H100, calculates a hash function over it 100 times, forming a reverse
hash chain H100, H99, ..., H1, H0, where Hi = hash(Hi+1), and embeds the result H0
into the microcheck she sends to the Merchant. The Merchant stores the hash value H0
(called Hcheck) along with the number of remaining valid tokens, 100. At this point, the
Merchant has sold to the Client 100 OTP coins, only valid with that Merchant. However,
the construction allows the Client to be charged only for the actual amount spent.

When the Client wants to use the coins, she sends the next hash value to the Merchant.
That is, she first sends H1, then H2, etc. The Merchant checks that the received hash
value gives the previously stored value, i.e., that Hstored = hash(Hreceived). If so, she
decrements the number of remaining valid tokens, and stores the new received value.
Thus, we have established a convention where a single OTP password represents the
value for a certain commodity, e.g., for 5 seconds of access time. Once the commodity
has been used up, the Merchant asks for the next token, to continue service.

Once the Client has used all coins or stops using more coins, the Merchant possesses
a hash value HN where N is the number of coins used. When he deposits the microcheck
to the CSC, he also sends these numbers. The CSC computes Hcheck = hashN (HN)

94 M. Blaza et al.

and compares this to the number stored in the microcheck. If they match, it can be certain
that the Client has indeed bought N units of the good.

2 Architecture

We describe the TAPI architecture through an example use in pay-per-use 802.11 access.
We then give a brief security analysis of our architecture.

2.1 Example Usage Scenario

As an example, we show how the system can be adapted to a public wireless Internet
access using Wireless LANs. We begin with a client that has signed up with an acceptable
Provisioning agent. Here, access points subsume the role of the Merchant and users play
the role of the Payer. As a result of this registration process (which happens offline), the
user is issued with a clearing check, signed with the PA’s public key:

Authorizer: PA KEY
Licensees: PAYER KEY
Conditions: app domain == "Internet Access" &&

currency == "USD" &&
&amount < 2.51 && date < "20031231" -> "true";

Signature: ...

Wireless LANAuthentication. The IEEE 802.1x standard [5] defines a means to authen-
ticate clients in an Ethernet-like network, e.g., it allows authenticating devices starting
to use WLAN or a corporate LAN for Internet access. In practice, the standard defines
how to run the IETF standard Extensible Authentication Protocol (EAP) [6] over raw
Ethernet frames. The encapsulation is called EAP over LAN (EAPoL) [5].

Since we use the standard EAP protocol, it is possible to use any or all of its sub-
protocols. However, since neither EAP or EAPoL provide any cryptographic protection
themselves, the security of the system depends on the security of the underlying network
and on the properties of the EAP subprotocol. Thus, the risks and the protections must
be matched to provide the desired level of security.

When 802.1x is used, there are two kinds of client hosts: authenticated and unau-
thenticated. In a wired LAN, the clients are usually distinguished based on the port:
a physical port is either authenticated or not. In a shared medium, e.g., Wireless LAN
(WLAN), the distinction is usually based on the Layer 2 addresses. It may be possible to
falsify or “steal” a MAC address, depending on the actual implementation. In the case of
public WLAN, where no encryption is used, the only protection is the relative difficulty
of using a MAC address at the same time another client is using it.

Buying OTP coins. Whenever a new client host wants to join a LAN that uses IEEE
802.1x, the access-point attempts to run EAPoL. The status of the client is kept unau-
thenticated as long as the client fails to authenticate through EAPoL. In our case, we

TAPI: Transactions for Accessing Public Infrastructure 95

provide unauthenticated clients limited access so that they can buy OTP coins, used for
the actual EAPoL level authentication (see below). That is, any unauthenticated client
is served (via DHCP) a private IP address. This address can be used only locally.

The client uses the MPP protocol to purchase a pile of OTP coins. In the simplest case
(and lacking any special-purpose protocol for purchasing coins), a simple web interface
can be used with the user. When the user contacts the captive portal, he sees a web page
that encodes the details of the Merchant offer, e.g.:

merchant = "ADK’S WIRELESS"
currency = "USD"
product = "Internet Access"
date = "20020916"
packets per coin = "100"
coins per dollar = "10000"
amount = "2"
nonce = "eb2c3dfc860dde9a"

The user examines the details of the request and, if acceptable, authorizes a payment
to the merchant by issuing the appropriate KeyNote microcheck:

Authorizer: PAYER KEY
Licensees: "ADK’s Internet"
Conditions: app domain == "Internet Access" &&

currency == "USD" && amount == "2" &&
packets per coin == "100" &&
coins per dollar == "10000" &&
first coin == "c637bf92f9f371dfa09\

59bc467d04b91c2ea1b29" &&
nonce == "eb2c3dfc860dde9a" &&
date == "20001227" -> "true";

Signature: ...

The microcheck also contains the value for the first OTP Coin.This coin is not actually
used, but serves as the beginning of the OTP chain. The next time the client needs to
authorize a payment, she will use the next coin in the chain, i.e., “310b86e0b62b82856-
2fc91c7be5380a992b2786a”. The user sends this microcheck and its guaranteeing check,
issued by the PA, to the access point. The latter verifies the integrity of the credentials
and determines (by invoking KeyNote) whether the CSC will honor the payment terms.

Using OTP coins. Once the Client has acquired a set of OTP coins, she runs the standard
802.1x EAPoL protocol with the local access point. The access point requests a user
identifier from the client, who answers with a string identifying the microcheck used for
buying the OTP coins, and the merchant the coins where bought from. The access point
then contacts the back-end authenticator (the Merchant). The microcheck fingerprint
indicates the correct unused OTP coin pile.

96 M. Blaza et al.

Once the back-end authenticator receives the identity response, it checks the OTP
coin pile and sends an OPIE request, requesting for the next unused OPIE password,
i.e., OTP coin. The Client responds with the next unused coin, Hi+1. The back-end
authenticator checks the coin, records it as used, and replies with an EAP SUCCESS
message. As the access point receives the EAP SUCCESS message from the back-end
authenticator, it changes the status of the client into authenticated, and passes the message
to the client. When the client receives the SUCCESS message, she releases her current
IP address and requests a new one with DHCP. Since she is now authenticated, she gets
a new IP address that she can use to communicate with the outside world. Alternatively,
the client could have received a valid IP address which was appropriately filtered by the
access point; on success, the relevant filters are simply removed.

Before the OTP coin is used up, the back-end authenticator sends a new OPIE request
to the client. If the client wants to continue, she replies with the next OTP coin. On the
other hand, if the client does not want to continue access for any reason, she simply does
not respond to the request. Thus, if the client goes off-line, the access point changes the
status of the client’s MAC address into unauthenticated.

Clearing. Periodically, the access point provides all these microchecks along with the
related transaction records to the CSC, which uses this information to verify the transac-
tion and charge/credit the relevant accounts. The user’s device (laptop, PDA, etc.) may
also keep a record of all transactions, which can be used in case of a charge dispute.
CSCs communicate with PAs to indicate the status of Payers’ and Merchants’ accounts.
Part of the transaction records include the last OTP coin received from a user, and its
serial number. The CSC can verify its validity, by repeatedly hashing it the appropriate
number of times and comparing the result with the initial OTP coin included in the
microcheck. Thus, the CSC can respectively debit the Merchant’s account and credit the
Payer’s account for the appropriate amount. In case of dispute, the exact usage can be de-
termined by verifying the credentials and the OTP coin chain. Assuming the underlying
cryptography is not broken, the results are non-repudiable.

2.2 Security Analysis

The security of the system can be broken into two parts: one that relates to the security
at the network level, and one that refers to the security of the payment mechanisms.

WLAN security. Wireless LANs are known to be notoriously insecure. However, their
insecurity depends heavily in the way they are used. In our example case, where WLAN
is used for providing public Internet access, the operator is mainly interested in collecting
the access fees, while the clients are interested in getting the service they pay for. Other
security concerns that the users may have (e.g. privacy) can be taken care of at an upper
layer, and fall beyond the scope of this paper. Consequently, the main threats we are
interested in are: (a) someone gaining access without paying, and (b) someone paying
but not gaining access. Naturally, these threats may occur at the same time, through an
attacker “stealing” access that another user has paid for.

Thus, it is certainly possible for an attacker to cause an authenticated client to dis-
connect from the network, and start using its MAC address. However, the access point
is likely to detect the event and may require immediate re-authentication as the MAC

TAPI: Transactions for Accessing Public Infrastructure 97

address re-connects to the network. If the value of the OTP coins is low enough, e.g.,
just a few seconds of access time, the gain for the potential attacker is small. Finally, it
should be straightforward to detect an attacker that repeatedly steals MAC addresses.

A more powerful attacker can set up a phony access point. If he lures other clients
to send OTP coins to it, he can then use these coins to pay towards the real access point,
effectively riding free. The victim clients are unlikely to notice anything, since they
still get the service they expect. The real access point may not notice anything either,
depending on its sophistication. While this attack can be made harder, e.g., by including
the Client’s MAC address in the microchecks, the simple nature of the OTP coins makes
it impossible to block the attack altogether. However, given the current status of WLAN
deployment, the cost of the attack compared to the benefits gained seems to be high
enough to render the attack academic. For proper security, either the OTP coins must
be replaced with something more sophisticated (and costly), or the underlying network
must be secured. The additional cost should be evaluated against the expected risk and
cost of fraud, and implemented only if economically viable.

Payment Framework Security. When dealing with electronic payments we must ensure
that fraudulent transactions cannot take place, e.g., the merchant should not be able to
forge an OTP coin, nor should the user be able to deny that she has spent one.

The scheme requires that we select a non-reversible hash function. Thus, the merchant
can verify that Hn−1 was derived from Hn, but is unable to produce Hn−1 given Hn.
Similarly, if the client sends a number other than Hn−1, the merchant will detect that and
revoke the service. Similarly, if the merchant produces Hn−1, the client cannot claim that
she has not sent it. An extensive discussion of the security of the KeyNote microcheck
architecture may be found in [7].A key observation is that the low value of the checks and
the need for light-weight verification mechanisms favor the use of credential expiration
(with short lifetimes) over the use of a more heavyweight revocation mechanism such
as credential revocation lists.

3 Implementation

We have implemented the IEEE 802.1x protocol and the OTP coins in the FreeBSD
operating system [3]. Our initial performance measurements indicate that the effect on
payload performance is negligible: a typical EAPoL transaction is performed in less than
two seconds, making it possible to support re-authentication every 5-10 seconds.

Our 802.1x implementation consists of kernel code that implements the basic framing
functions for the authentication protocol, plus a number of user level programs. The user-
level programs implement the individual EAP subprotocols, and in particular the EAP
OTP authenticator and supporting modules. These rely on a small new library, libeap.
They also utilize the libskey library present in FreeBSD. To make it easy to buy OTP
coins, we use a captive portal to allow users to download the 802.1x and EAP OTP
implementations. Our MAC filter module forward to a web server packets arriving from
unauthenticated users. Thus, it is possible to create a situation where the only services
provided to an unauthenticated client are DHCP and the captive web server.

We are currently working on implementing the full-fledged MPP protocol on top of
EAP, without the need for a captive portal. Users can specify their payment policies using

98 M. Blaza et al.

KeyNote (or some other front-end mechanism, which is then translated to KeyNote).
On receipt of an offer from an access point, KeyNote is called to determine whether the
terms are acceptable. If so, a microcheck is automatically issued, and the necessary OTP
coins are generated and used without user interaction. If the offer is not acceptable, the
user is notified and presented with the offer.

4 Related Work

IEEE 802.1x Security. IEEE 802.1x [5] is a forthcoming standard for authenticating
and authorizing users in Ethernet like local area network (LAN) environments. It is
primarily meant to secure switched Ethernet wireline networks and IEEE 802.11 based
WLANs. In the typical usage scenarios, the network requires user authentication before
any other traffic is allowed, i.e., even before the client is assigned an IP address. This
allows corporations to strictly control access to their networks. It is important to note that
802.1x implements only authentication and MAC address based access control. Since
MAC spoofing is fairly easy, the resulting system may not be secure enough.

[8] argues that 802.1x security is flawed since it does not provide per-packet integrity
and authenticity. Depending on the settings, this may allow session hijacking, enabling
an attacker to take over a MAC address that belongs to a legitimate, authenticated user.
In a shared medium such as 802.11, authentication should be tightly integrated with a
link-level integrity system using different session keys for different clients.

Electronic Cash and Micropayments. NetBill [9] is a transactional payment protocol
with many advanced features (atomicity, group membership, pseudonyms, etc.) that
requires communication with the NetBill server for each transaction, thus exhibiting the
same drawback with respect to micropayments as the simpler online protocols already
mentioned. Other general payment protocols [10,11,12] suffer the same problem.

Digital cash-based systems (e.g., [13]) do not directly address the issue of double-
spending (fraud). Some e-cash systems use online checking, thus negating the off-line
operation capability. Others rely on detection after the fact. This drawback is manifest
in several micropayment protocols [14,15,16,17]. While double-spending is a problem
in all off-line systems, none of these protocols address the issue of risk management.

NetCents [18] and Millicent [19] are scrip-based off-line-friendly micropayment pro-
tocols. As the monetary unit used in these protocols is vendor-specific, double-spending
is made difficult. A hidden assumption is that merchants have “total information”. If
there are many points of sale, continuous communication and synchronization is re-
quired between the different points, negating the benefits of off-line operation.

MiniPay [20] was developed primarily for use with a web browser, with a lot of effort
gone into the user interface aspect. Risk management is implemented as a decision to
perform an online check with the billing server based on the total spending by the
customer that day, and some parameter set by the merchant. The billing provider cannot
customize the risk-management parameters per-customer or per-merchant. Fileteller [7]
uses a scheme similar to ours for buying and selling network-based storage.

TAPI: Transactions for Accessing Public Infrastructure 99

5 Summary and Concluding Remarks

We presented TAPI, a simple offline electronic payment scheme intended for general
Internet-based micropayments. TAPIallows multiple partial charges on a single payment
authorization by splitting a micropayment transaction into a number of minipayments
for smaller amounts (totaling the amount of the original micropayment), thus accom-
modating multiple purchases within the original transaction.

To demonstrate our design in practice, we implemented the IEEE 802.1x protocol
along with the OTP coins in the FreeBSD operating system. Our case study involved per-
packet charging in a wireless network. Initial performance measurements indicated that
the effect on payload performance was negligible and that the typical EAPoL transaction
takes less than 2 seconds on average. We are in the process of implementing the full-
fledged MPP protocol on top of EAP, without the need for a captive portal.

References

1. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The KeyNote Trust Management
System Version 2. Internet RFC 2704 (1999)

2. Blaze, M., Ioannidis, J., Keromytis, A.D.: Offline Micropayments without Trusted Hardware.
In: Proceedings of the Fifth International Conference on Financial Cryptography. (2001)

3. Nikander, P.: Authorization and charging in public wlans using freebsd and 802.1x. In:
Proceedings of the Annual USENIX Technical Conference, Freenix Track. (2002)

4. N. Haller, C. Metz, P.N.M.S.: A One-Time Password System. RFC 2289, IETF (1998)
5. : IEEE Draft P802.1X/D11: Standard for Port based Network Access Control (2001)
6. L. Blunk, J.V.: PPP Extensible Authentication Protocol (EAP). RFC 2284, IETF (1998)
7. Ioannidis, J., Ioannidis, S., Keromytis, A., Prevelakis, V.: Fileteller: Paying and Getting

Paid for File Storage. In: Proceedings of the Sixth International Conference on Financial
Cryptography. (2002)

8. Mishra, A., Arbaugh, W.A.: An Initial Security Analysis of the IEEE 802.1x Standard. Tech-
nical Report UMIACS-TR-2002-10, Computer Science Department, University of Maryland
(2002)

9. Cox, B., Tygar, D., Sirbu, M.: NetBill security and transaction protocol. In: Proceedings of
the First USENIX Workshop on Electronic commerce, USENIX (1995)

10. Neuman, C., Medvinsky, G.: Requirements for network payment: The Netcheque prospective.
In: Proceedings of IEEE COMCON. (1995)

11. Bellare, M., Garay, J., Herzberg, A., Krawczyk, H., Steiner, M., Tsudik, G., Waidner, M.: iKP
– A Family of Secure Electronic Payment Protocols. In: Proceedings of the First USENIX
Workshop on Electronic Commerce, USENIX (1995)

12. Foo, E., Boyd, C.: A Payment Scheme Using Vouchers. In: Proceedings of the Second Inter-
national Conference on Financial Cryptography. Number 1465 in Lecture Notes in Computer
Science, Springer-Verlag (1998) 103–121

13. Chaum, D.: Achieving Electronic Privacy. Scientific American (1992) 96–101
14. Rivest, R., Shamir, A.: PayWord and MicroMint. CryptoBytes (2) 7–11
15. Jutla, C.,Yung, M.: Paytree: amortized signature for flexible micropayments. In: Proceedings

of the Second USENIX Workshop on Electronic Commerce, USENIX (1996)
16. Hauser, R., Steiner, M., Waidner, M.: Micro-payments based on ikp. In: Proceedings of the

14th Worldwide Congress on Computer and Communication Security Protection. (1996)

100 M. Blaza et al.

17. Tang, L.: A Set of Protocols for MicroPayments in Distributed Systems. In: Proceedings of
the First USENIX Workshop on Electronic Commerce, USENIX (1995)

18. Poutanen, T., Hinton, H., Stumm, M.: NetCents: A Lightweight Protocol for Secure Mi-
cropayments. In: Proceedings of the Third USENIX Workshop on Electronic Commerce,
USENIX (1998)

19. Manasse, M.S.: The Millicent protocols for electronic commerce. In: Proceedings of the First
USENIX Workshop on Electronic Commerce, USENIX (1995)

20. Herzberg, A.: Safeguarding Digital Library Contents. D-Lib Magazine (1998)

	Introduction
	Motivation
	KeyNote Microchecks
	OTP Coins

	Architecture
	Example Usage Scenario
	Security Analysis

	Implementation
	Related Work
	Summary and Concluding Remarks

