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Abstract. A tree-partition of a graph is a partition of its vertices into
‘bags’ such that contracting each bag into a single vertex gives a forest.
It is proved that every k-tree has a tree-partition such that each bag
induces a (k — 1)-tree, amongst other properties. Applications of this
result to two well-studied models of graph layout are presented. First
it is proved that graphs of bounded tree-width have bounded queue-
number, thus resolving an open problem due to Ganley and Heath [2001]
and disproving a conjecture of Pemmaraju [1992]. This result provides
renewed hope for the positive resolution of a number of open problems
regarding queue layouts. In a related result, it is proved that graphs of
bounded tree-width have three-dimensional straight-line grid drawings
with linear volume, which represents the largest known class of graphs
with such drawings.

1 Introduction

This paper considers two models of graph layout. The first, called a queue layout,
consists of a total order of the vertices, and a partition of the edges into queues,
such that no two edges in the same queue are nested [11/12]15|17J20]. The dual
concept of a stack layout (or book embedding), is defined similarly, except that
no two edges in the same stack may cross. The minimum number of queues
(respectively, stacks) in a queue (stack) layout of a graph is its queue-number
(stack-number). Applications of queue layouts include parallel process schedul-
ing, fault-tolerant processing, matrix computations, and sorting networks (see
[15]). We prove that graphs of bounded tree-width have bounded queue-number,
thus solving an open problem due to Ganley and Heath [9], who proved that
stack-number is bounded by tree-width, and asked whether an analogous re-
lationship holds for queue-number. This result has significant implications for
other open problems in the field.

The second model of graph layout considered is that of a three-dimensional
(straight-line grid) drawing [2I35IR1420]. Here vertices are positioned at grid-
points in Z3, and edges are drawn as straight line-segments with no crossings.
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While graph drawing in the plane is well-studied, there is a growing body of
research in three-dimensional graph drawing. Applications include information
visualisation, VLSI circuit design, and software engineering (see [5]). We focus
on three-dimensional drawings with small volume, and prove that graphs of
bounded tree-width have three-dimensional drawings with O(n) volume, which
is the largest known class of graphs admitting such drawings. The best previous
bound was O(nlog?n).

To prove the above results, we employ a structure called a tree-partition
of a graph, which consists of a partition of the vertices into ‘bags’ such that
contracting each bag to a single vertex gives a forest. In a result of independent
interest, we prove that every k-tree has a tree-partition such that each bag
induces a connected (k— 1)-tree, amongst other properties. The second tool that
we use is a track layout, which consists of a vertex-colouring and a total order of
each colour class, such that between any two colour classes no two edges cross.
We prove that every graph has a track layout where the number of tracks is
bounded by a function of the graph’s tree-width.

The remainder of the paper is organised as follows. Section 2]recalls a number
of definitions and well-known results. In Section Blwe prove the above-mentioned
theorem concerning tree-partitions of k-trees. In Section Hl we establish our re-
sults for track layouts. Combining these with earlier work in the companion
papers [B20], in Section [{l we prove our theorems for queue layouts and three-
dimensional drawings. We discuss ramifications of our results for a number of
open problems in Section

2 Preliminaries

We consider undirected, simple, and finite graphs G with vertex set V(G) and
edge set E(G). The number of vertices and maximum degree of G are respectively
denoted by n = |V(G)| and A(G). The subgraph induced by a set of vertices
A CV(G) is denoted by G[A]. A graph H is a minor of G if H is isomorphic to
a graph obtained from a subgraph of G by contracting edges. A family of graphs
closed under taking minors is proper if it is not the class of all graphs.

A graph parameter is a function « that assigns to every graph G a non-
negative integer a(G). Let G be a family of graphs. By «a(G) we denote the
function f: N — N, where f(n) is the maximum, taken over all n-vertex graphs
G € G, of a(G). We say G has bounded « if a(G) € O(1). A graph parameter
« is bounded by a graph parameter [, if there exists a function f such that
a(G) < f(B(Q)) for every graph G.

A k-tree for some k € N is defined recursively as follows. The empty graph is
a k-tree, and the graph obtained from a k-tree by adding a new vertex adjacent
to each vertex of a clique with at most k vertices is a k-tree. This definition
is by Reed [16]. The following more common definition of a k-tree, which we
call ‘strict’, was introduced by Arnborg and Proskurowski [I]. A k-clique is a
strict k-tree, and the graph obtained from a strict k-tree by adding a new vertex
adjacent to each vertex of a k-clique is a strict k-tree. Obviously the strict k-trees
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are a proper sub-class of the k-trees. The tree-width of a graph G, denoted by
tw(@), is the minimum k& such that G is a subgraph of a k-tree (which equals
the minimum & such that G is a subgraph of a strict k-tree [16]). Note that k-
trees can be characterised as the chordal graphs with no clique on k + 2 vertices.
Graphs with tree-width at most one are the forests. Graphs with tree-width
at most two are the series-parallel graphs, defined as those graphs with no K,
minor.

Let G be a graph. A total order ¢ = (v1,vs,...,v,) of V(G) is called a
vertex-ordering of G. Suppose G is connected. The depth of a vertex v; in o is
the graph-theoretic distance between v; and v; in G. We say o is a breadth-first
vertex-ordering if for all vertices v <, w, the depth of v in ¢ is no more than the
depth of w in ¢. Vertex-orderings, and in particular, vertex-orderings of trees
will be used extensively in this paper. Consider a breadth-first vertex-ordering
o of a tree T such that vertices at depth d > 1 are ordered with respect to the
ordering of vertices at depth d — 1. In particular, if v and x are vertices at depth
d with respective parents w and y at depth d — 1 with w <, y then v <, x. Such
a vertex-ordering is called a lexicographical breadth-first vertex-ordering of T'.

3 Tree-Partitions

Let G be a graph and let T be a tree. An element of V(T) is called a node. Let
{T, CV(G) : 2 € V(T)} be a set of subsets of V(G) indexed by the nodes of T'.
Each T, is called a bag. The pair (T, {T, : « € V(T)}) is a tree-partition of G if:

— V distinct nodes x and y of T, T, N T,, = 0, and

— V edge vw of G, either
e Jnode z of T with v € T, and w € T, (vw is an intra-bag edge), or
o Jedge zy of T with v € T, and w € T, (vw is an inter-bag edge).

The main property of tree-partitions that has been studied is the maximum
size of a bag, called the width of the tree-partition. The minimum width over all
tree-partitions of a graph G is the tree-partition-width of G, denoted by tpw(G).
Ding and Oporowski [4] proved that tpw(G) < 24tw(G) - max{l, A(G)}, and
Seese [19] proved that tw(G) < 2tpw(G) — 1, for every graph G.

Theorem [ below provides a tree-partition of a k-tree with additional features
besides small width (see Figure[l). First, the subgraph induced by each bag is a
connected (k—1)-tree. This allows us to perform induction on k. Second, in each
non-root bag Ty, the vertices in the parent bag of  with a neighbour in 7, form
a clique. This feature is crucial in the intended application (Theorem [2). Finally
the bound on the tree-partition-width represents a constant-factor improvement
over the above result by Ding and Oporowski [4] in the case of k-trees.

Theorem 1. Let G be a k-tree with maximum degree A. Then G has a rooted
tree-partition (T,{Ty : © € V(T')}) such that for all nodes x of T,
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Fig. 1. Tree-partition of a 3-tree.

(a) if x is a non-root node of T and y is the parent node of x, then the vertices
in T, with a neighbour in T, form a cliqgue C, of G, and
(b) the induced subgraph G[T;] is a connected (k — 1)-tree.

Furthermore the width of (I,{T, : x € V(T')}) is at most max{1, k(A —1)}.

Proof. We assume G is connected, since if G is not connected then a tree-
partition of G that satisfies the theorem can be determined by adding a new
root node with an empty bag which is adjacent to the root node of a tree-
partition of each connected component of G. It is well-knowt{]] that for every
vertex r of the k-tree G, there is a vertex-ordering o = (v1,va, ..., v,) of G with
v1 = r, such that for all 1 <i < n,

(i) G* = G[{v1,va,...,v;}] is connected and the vertex-ordering of G* induced
by ¢ is a breadth-first vertex-ordering of G®.

(ii) the neighbours of v; in G* form a clique C; = {v; : v;v; € E(G),j < i} with
1 <|Ci| <k (unless i = 1 in which case C; = ().

Let r be a vertex of minimum degree Then deg(r) < k. Let ¢ =
(v1,v9,...,v,) be a vertex-ordering of G with v; = r, and satisfying (i) and
(ii). By (i), the depth of each vertex v; in o is the same as the depth of v; in the
vertex-ordering of G7 induced by o, for all j > i. We therefore simply speak of
the depth of v;. Let V; be the set of vertices of G at depth d.

Claim: For all 1 < i < n, in every connected component Z of G*[Vy], the set of
vertices at depth d — 1 with a neighbour in Z form a clique of G, for all d > 1.

! In the language of chordal graphs, o is a (reverse) perfect elimination vertex-ordering
and can be determined, for example, by the Lex-BFS algorithm of Rose et al. [18].
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Proof. We proceed by induction on i. The result is trivially true for i = 1.
Suppose it is true for i — 1. Let d be the depth of v;. Each vertex in C; is at
depth d — 1 or d. Let C/ be the set of vertices in C; at depth d, and let C}’ be
the set of vertices in C; at depth d — 1. Thus C/ and C!’ are both cliques with
C; = C; U C!. Furthermore, if ¢ > 1 then v; must have a neighbour at depth
d — 1, and thus C}' # (. Let X be the vertex set of the connected component
of G*[V,] such that v; € X. By induction, for all d’ < d, the claim holds for
all connected components Y of G¥[Vy] with Y # X, since such a Y is also a
connected component of G*~1[Vy].

Case 1. C! = : Then v; has no neighbours in G at depth d; that is, X = {v;}.
Thus the set of vertices at depth d — 1 with a neighbour in X is precisely the
clique C; = CY'.

Case 2. C] # 0: The neighbourhood of v; in X forms a non-empty clique
(namely C?). Thus X \v; is the vertex-set of a connected component of G*~1[V,].
Let Y be the set of vertices at depth d—1 with a neighbour in X \v;. By induction,
Y is a clique. Since C/UC/ is a clique, C}' C Y. Thus the set of vertices at depth
d — 1 with a neighbour in X is the clique Y. a

Define a graph T and a partition {7}, : © € V(T)} of V(G) indexed by the
nodes of T as follows. There is one node x in T for every connected component
of each G[Vy], whose bag T, is the vertex-set of the corresponding connected
component. We say x and T, are at depth d. Clearly a vertex in a depth-d bag
is also at depth d. The (unique) node of T' at depth zero is called the root node.
Let two nodes = and y of T be connected by an edge if there is an edge vw of
G with v € T, and w € T,. Thus (T, {1, : = € V(T)}) is a ‘graph-partition’.
We now prove that in fact T is a tree. First observe that T is connected since
G is connected. By definition, nodes of T' at the same depth d are not adjacent.
Moreover nodes of T’ can be adjacent only if their depths differ by one. Thus T’
has a cycle only if there is a node = in T" at some depth d, such that = has at
least two distinct neighbours in T at depth d — 1. However, by the above claim
(with ¢ = n), the set of vertices at depth d — 1 with a neighbour in T, form a
clique (called C), and are hence in a single bag at depth d — 1. Thus T is a tree
and (T,{T, : x € V(T)}) is a tree-partition of G.

We now prove that each bag T, induces a connected (k — 1)-tree. This is true
for the root node since it only has one vertex. Suppose x is a non-root node of
T at depth d. Each vertex in T}, has at least one neighbour at depth d — 1. Thus
in the vertex-ordering of T, induced by o, each vertex v; € T}, has at most k — 1
neighbours v; € T, with j < ¢. These neighbours induce a clique. Thus G[T}] is
a (k — 1)-tree. By definition each G[T] is connected.

Finally, consider the size of a bag in T. We claim that each bag contains at
most max{1, k(A—1)} vertices. The root bag has one vertex. Let = be a non-root
node of T with parent node y. Suppose y is the root node. Then T, = {r}, and
thus |T,| < deg(r) < k < k(A — 1) assuming A > 2. If A < 1 then all bags
have one vertex. Now assume y is a non-root node. The set of vertices in T},
with a neighbour in T, forms the clique C,. Let ¥’ = |Cy|. Thus k¥’ > 1, and
since C, C T, and G[T,] is a (k — 1)-tree, k' < k. A vertex v € C, has k' — 1



210 V. Dujmovi¢ and D.R. Wood

neighbours in C), and at least one neighbour in the parent bag of y. Thus v has
at most A — k' neighbours in T,.. Hence the number of edges between C, and
T, is at most k(A — k'). Every vertex in T, is adjacent to a vertex in C,. Thus
|T) <K' (A—FK') < k(A—1). This completes the proof. O

4 Track Layouts

A colouring of a graph G is a partition {V; : ¢ € I'} of V(G), where I is a set of
colours, such that for every edge vw of G, if v € V; and w € V; then i # j. Each
set V; is called a colour class. If <; is a total order of a colour class V;, then we
call the pair (V;, <;) a track. If {V; : i € I'} is a colouring of G, and (V;,<;) is a
track for each colour ¢ € I, then we say {(Vi,<;) : 4 € I} is a track assignment
of G indexed by I. At times it will be convenient to also refer to a colour ¢ € I
and the colour class V; as a track. The precise meaning will be clear from the
context. A t-track assignment is a track assignment with ¢ tracks. An X-crossing
in a track assignment consists of two edges vw and xy such that v <; x and
y <; w, for distinct tracks V; and Vj. A t-track assignment with no X-crossing
is called a t-track layout. The track-number of a graph G, denoted by tn(G), is
the minimum ¢ such that G has a t-track layout.

Dujmovié¢ et al. [5] first introduced track layout, and proved that track-
number is bounded by path-width. In particular, tn(G) < pw(G) + 1 for every
graph G, where pw(G) denotes the path-width of G. In what follows we prove
that track-number is bounded by tree-width. First consider the case of trees. The
following result is implicit in the proof by Felsner et al. [8] that every outerplanar
graph has a three-dimensional drawing with linear volume (see Figure [2).

Lemma 1. [§] Every tree T has a 3-track layout.

bbb

Fig. 2. A 3-track layout of a tree.

Let {(Vi,<;) : i € I} be a track layout of a graph G. We say a clique C of
G covers the set of tracks {i € I : CNV; # 0}. Let S be a set of cliques of
G. Suppose there is a total order < on S such that for all cliques Cy,Cs € S,
if there exists a track i € I, and vertices v € V; N Cy and w € V; N Cy with
v <; w, then C; < C3. Then we say = is nice, and S is nicely ordered by the
track layout. The proof of the next lemma is elementary.

2 A track layout was called an ‘ordered layering with no X-crossing and no intra-
layer edges’ in [5]6120]. Similar structures are implicit in [SJ1112J17]. Note that this
definition of track-number is unrelated to that of Gyarfds and West [10].
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Lemma 2. [6] Let L C I be a set of tracks in a track layout {(V;,<;) : i € I}
of a graph G. If S is a set of cliques, each of which covers L, then S is nicely
ordered by the given track layout.

Theorem 2. Track-number is bounded by tree-width. In particular, every graph
G with tree-width tw(G) < k has track-number tn(G) < t;, = 3% - 64" —3k=1)/9

Proof. If G is not a k-tree then add edges to G to obtain a k-tree containing
G as a subgraph. It is well-known that a graph with tree-width at most & is a
spanning subgraph of a k-tree. These extra edges can be deleted once we are
done. We proceed by induction on k with the following induction hypothesis:

For all k € N, there exist constants s and ty, and sets I and S such that

1. |I| =ty and |S| = sk,

2. each element of S is a subset of I, and

3. every k-tree G has a tg-track layout indexed by I, such that for every clique
C of G, the set of tracks that C covers is in S.

Consider the base case with £ = 0. A O-tree G has no edges and thus has
a l-track layout. Let I = {1} and order V; = V(G) arbitrarily. Thus ¢ty = 1,
so =1, and S = {{1}} satisfy the hypothesis for every 0-tree. Now suppose the
result holds for & — 1, and G is a k-tree. Let (T,{T, : v € V(T)}) be a tree-
partition of G described in Theorem [Il, where T is rooted at r. By Theorem [0
each induced subgraph G[T;] is a (k — 1)-tree. By induction, there are sets I
and S with |I| = tx—1 and |S| = sg_1, such that for every node z of T, the
induced subgraph G[T] has a t;_1-track layout indexed by I. For every clique
C of G[T), if C covers L C I then L € S. Assume I = {1,2,...,t,_1} and
S = {51,52,...,5s,_,}- By Theorem [1], for each non-root node z of T, if p is
the parent node of z, then the set of vertices in T, with a neighbour in 7}, form
a clique C,. Let a(x) = i where C, covers S;. Let a(r) = 1.

To construct a track layout of G we first construct a track layout of 7" indexed
by {(d,%) : d > 0,1 < i < sg_1}, where the track Ly, consists of nodes x of T" at
depth d with a(z) = i. Here the depth of a node z is the distance in T' from the
root node r to x. We order the nodes of T" within the tracks by increasing depth.
There is only one node at depth d = 0. Suppose we have determined the orders
of the nodes up to depth d — 1 for some d > 1. Let ¢ € {1,2,...,8,-1}. The
nodes in L4 ; are ordered primarily with respect to the relative positions of their
parent nodes (at depth d —1). More precisely, let p(x) denote the parent node of
each x € Ly ;. For all nodes x and y in Lg ;, if p(z) and p(y) are in the same track
and p(z) < p(y) in that track, then z < y in Ly,;. For z and y with p(x) and
p(y) on distinct tracks, the relative order of z and y is not important. It remains
to specify the order of nodes in Lg; with a common parent. Suppose P is a set
of nodes in Lg; with a common parent node p. By construction, for every node
x € P, the parent clique C, covers S; in the track layout of G[T},]. By Lemma
the cliques {C, : © € P} are nicely ordered by the track layout of G[T},]. Let
the order of P in track Lg,; be specified by a nice ordering of {C, : € P}, as
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Ld7sk—1

Fig. 3. Nodes with a common parent p.

illustrated in Figure Bl This construction defines a partial order on the nodes
in track Lg; that can be arbitrarily extended to a total order. Hence we have a
track assignment of T'. Since the nodes in each track are ordered primarily with
respect to the relative positions of their parent nodes in the previous tracks,
there is no X-crossing, and hence we have a track layout of 7'

To construct a track assignment of G from the track layout of T', replace each
track Lq; by tx—1 ‘sub-tracks’, and for each node x of T, insert the track layout
of G[T,] in place of x on the sub-tracks corresponding to the track containing
x. More formally, the track assignment of G is indexed by {(d,i,7) :d > 0,1 <
i < sp_1,1 <j <tp_1}. Each track Vg, ; consists of those vertices v of G such
that, if T, is the bag containing v, then z is at depth d in T, a(z) = ¢, and v is
on track j in the track layout of G[T,]. If z and y are distinct nodes of T with
z <yin Lq;, then v < w in Vg, ;, for all vertices v € T, and w € T}, on track
j- If v and w are vertices of G on track j in bag T, at depth d, then the relative
order of v and w in Vy 4(4),; is the same as in the track layout of G[T,].

Clearly adjacent vertices of G are in distinct tracks. Thus we have defined a
track assignment of G. We claim that there is no X-crossing. Clearly an intra-
bag edge of G is not in an X-crossing with an edge not in the same bag. By
induction, there is no X-crossing between intra-bag edges in a common bag.
Since there is no X-crossing in the track layout of T', inter-bag edges of G which
are mapped to edges of T" without a common parent node, are not involved in
an X-crossing. Consider a parent node p in 7. For each child node x of p, the
vertices in T}, adjacent to a vertex in T, forms the clique C,. Thus there is no
X-crossing between a pair of edges both from C, to T, since the vertices of C,,
are on distinct tracks. Consider two child nodes x and y of p. For there to be
an X-crossing between an edge from 7}, to T, and an edge from T}, to T}, the
nodes x and y must be on the same track in the track layout of 7. Suppose
x < y in this track. By construction, C; and Cy cover the same set of tracks,
and C, = Cy in the corresponding nice ordering. Thus for any track containing
vertices v € C, and w € Cy, v < w in that track. Since all the vertices in T,
are to the left of the vertices in T, (on a common track), there is no X-crossing
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between an edge from 7}, to 1, and an edge from 7}, to T},. Therefore there is
no X-crossing, and hence we have a track layout of G.

We now ‘wrap’ the track layout of G. Define a track assignment of G indexed
by {(d’J,j) :d e {0,1,2},1 < i < s5.9,1 <5 < tk,l}, where each track
Wd’,i,j = U{Vd,i,j rd=d (mod 3)} Ifve Vd,i,j and w € Vd+3,i,j then v < w
in the order of Wy ; ; (where d’ = d mod 3). The order of each Vy ; ; is preserved
in Wd/ﬂ"j. The tracks {Wd’,i,j o d S {O, 1,2},1 < 1 < Sk—1, 1 < j < tk—l} forms
a track assignment of GG. For every edge vw of G, the depths of the bags in T’
containing v and w differ by at most one. Thus in the wrapped track assignment
of G, adjacent vertices remain on distinct tracks, and there is no X-crossing.
The number of tracks is 3 - sx_1 - tx—1. Every clique C of G is either contained
in a single bag of the tree-partition or is contained in two adjacent bags. Let
S = {{(d,i,h) : h € S;} : d € {0,1,2},1 < i,j < sp_1}. For every clique
C of G contained in a single bag, the set of tracks containing C' is in S’. Let
S ={{(d,i,h) : h € S;} U{((d' +1) mod 3,p,h) : h € Sy} : d' € {0,1,2},1 <
,75,p,q < sk,l}. For every clique C' of G contained in two bags, the set of
tracks containing C is in S’. Observe that S’ U S” is independent of G. Hence
S U S" satisfies the hypothesis for k. Now |S’| = 3s2_, and |S”| = 3s{_,, and
thus [S” U S”| = 3s%_,(s7_; + 1). Therefore any solution to the recurrences
{so > 1, to > 1, s > 3si_,(s2_, + 1), ty, > 3sp_1 - tr_1} satisfies the
theorem. It is easily verified that s, = 6(4"~D/3 and ¢, = 3k . 64" =3k—1)/9 jg
such a solution. O

A number of refinements to the proof of Theorem [ that result in improved
bounds are possible [6]. For example, in the case of tw(G) = 2, we prove that
tn(G) < 18, whereas Theorem ] proves that tn(G) < 54. One such refinement
uses strict k-trees. From an algorithmic point of view, the disadvantage of using
strict k-trees is that at each recursive step, extra edges must be added to enlarge
the graph into a strict k-tree, whereas when using (non-strict) k-trees, extra
edges need only be added at the beginning of the algorithm.

If maximum degree as well as tree-width is bounded then the dependence on
the tree-width in our track-number bound can be substantially reduced.

Theorem 3. Every graph G with mazimum degree A(G), tree-width tw(G), and
tree-partition-width tpw(G), has track-number tn(G) < 3tpw(G) < 72tw(G) -
max{1, A(G)}.

Proof. Let (T,{T, : x € V(T)}) be a tree-partition of G with width tpw(G). By
Lemma [I, T has a 3-track layout. Replace each track by tpw(G) ‘sub-tracks’,
and for each node x in T', place the vertices in T}, on the sub-tracks replacing the
track containing x, with at most one vertex in T, on a single track. The total
order of each sub-track preserves the total order in each track of the track-layout
of T. There is no X-crossing, since in the track layout of 7', adjacent nodes are
on distinct tracks and there is no X-crossing. Thus we have a track layout of G
with 3tpw(G) < 72tw(G) - max{1l, A(G)} tracks []. O
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5 Queue Layouts and 3D Graph Drawings

A queue layout of a graph G consists of a vertex-ordering o of G, and a partition
of E(G) into queues, such that no two edges in the same queue are nested with
respect to o. That is, there are no edges vw and xy in a single queue with v <,
xr <g Y <, w. A similar concept is that of a stack layout (or book embedding),
which consists of a vertex-ordering o of G, and a partition of F(G) into stacks (or
pages) such that there are no edges vw and zy in a single stack with v <, z <,
w <, y. The minimum number of queues (respectively, stacks) in a queue (stack)
layout of G is called the queue-number (stack-number or page-number) of G, and
is denoted by qn(G) (sn(G)). Ganley and Heath [J] proved that stack-number
is bounded by tree-width, and asked whether queue-number is also bounded
by tree-width? The bound of sn(G) < tw(G) 4+ 1 by Ganley and Heath [9] has
recently been improved to sn(G) < tw(G) by Lin and Li [13].

A 1-tree has queue-number at most one, since in a lexicographical breadth-
first vertex-ordering of a tree no two edges are nested [12]. Rengarajan and Veni
Madhavan [I7] proved that 2-trees have queue-number at most three. Wood [20]
proved that queue-number is bounded by path-width and tree-partition-width.
In particular, qn(G) < pw(G) and gqn(G) < 2tpw(G) for every graph G. Hence
an(G) < 36tw(G) - max{1l, A(G)} by the result of Ding and Oporowski [4].
Wood [20] also proved that qn(G) < tn(G)—1 for every graph G. Thus Theorem P
implies the following result, which answers the above question of Ganley and
Heath [9] in the affirmative. Further consequences are discussed in Section [6.

Theorem 4. Queue-number is bounded by tree-width. In particular, every graph
G with tree-width tw(G) < k has queue-number qn(G) < 3% - (4" —3k-1)/9,

A three-dimensional straight-line grid drawing of a graph, henceforth called a
3D drawing, represents the vertices by distinct points in Z3 (called grid-points),
and represents each edge as a line-segment between its end-vertices, such that
edges only intersect at common end-vertices, and an edge only intersects a vertex
that is an end-vertex of that edge. In contrast to the case in the plane, it is
well known that every graph has a 3D drawing. We therefore are interested in
optimising certain measures of the aesthetic quality of a drawing. If a 3D drawing
is contained in an axis-aligned box with side lengths X — 1, Y — 1 and Z — 1,
then we speak of a X x Y x Z drawing with volume X -Y - Z. We study 3D
drawings with small volume.

Cohen et al. [2] proved that every graph has a 3D drawing with O(n?) vol-
ume, and this bound is asymptotically tight for K. It is therefore of interest to
identify fixed graph parameters that allow for 3D drawings with o(n3) volume.
Pach et al. [14] proved that graphs of bounded chromatic number have 3D draw-
ings with O(n?) volume, and that this bound is asymptotically optimal for K, ,,.
The first non-trivial O(n) volume bound was established by Felsner et al. [8] for
outerplanar graphs. Dujmovié et al. [520] proved that track layouts, queue lay-
outs, and 3D drawings with small volume are inherently related.



Tree-Partitions of k-Trees with Applications in Graph Layout 215

Theorem 5. [5J20] FEvery n-vertex graph G has a O(tn(G)) x O(tn(G)) x O(n)
drawing. Let F(n) be a family of functions closed under multiplication, such as
O(1) or O(polylogn). Then for any graph family G, every graph G € G has
a F(n) x F(n) x O(n) drawing if and only if the track-number tn(G) € F(n).
Moreover, if G is proper minor-closed then G has track-number tn(G) € F(n) if
and only if G has queue-number qn(G) € F(n).

Applying Theorem Bl Dujmovi¢ et al. [5] proved that every graph G has a 3D
drawing with O(pw(G)? - n) volume, which is O(nlog?n) for graphs of bounded
tree-width. Using the result of Rengarajan and Veni Madhavan [17] discussed in
Section Bl Wood [20] proved that series-parallel graphs have 3D drawings with
O(n) volume, but with a constant of at least 1016, For particular sub-classes of
series-parallel graphs, improved constants have been obtained [3].

Wood [20] proved that graphs of bounded tree-partition-width have 3D draw-
ings with O(n) volume, although the actual volume bound is approximately
O(tW(G)4(tW(G)2tpW(G))tW(G)2 -m). Theorems B and [ together prove the fol-
lowing result, which represents a substantial improvement in the dependence on
tpw(G) compared with the above-mentioned result.

Theorem 6. FEvery n-vertex graph G with bounded tree-partition-width, which
includes graph of bounded tree-width and bounded degree, has a 3D drawing with
O(n) volume. In particular, the drawing is O(tpw(G)) x O(tpw(G)) x O(n), which
is O(tw(GQ) A(@)) x O(tw(G) A(G)) x O(n).

Theorems 2] and [ together prove our main result of this section.

Theorem 7. FEvery n-vertex graph G with bounded tree-width has a 3D drawing
with O(n) volume. In particular, the drawing is (9(64tw(c)) X (9(64tw(c)) x O(n).

As well as providing many new classes of graphs that admit 3D drawings
with O(n) volume, Theorem [7] dramatically improves the constant in the bound
for series-parallel graphs. As mentioned in Section ] such graphs have 18-track
layouts. It follows that every series-parallel graph has a 36 x 37 x 37[ {5 | drawing.

6 Open Problems

Consider the following open problems: (1) Do planar graphs have bounded queue-
number? (2) Is queue-number bounded by stack-number? Since planar graphs
have bounded stack-number, the second question is more general than the first.
Heath et al. [I1] conjectured that both of these questions have an affirmative
answer. More recently however, Pemmaraju [I5] conjectured that the ‘stellated
K3’, a planar 3-tree, has ©(logn) queue-number, and provided evidence to sup-
port this conjecture (also see [9]). This suggested that the answers to the above
questions were both negative. In particular, Pemmaraju [I5] and Heath [pri-
vate communication, 2002] conjectured that planar graphs have O(logn) queue-
number. However, Theorem Ml provides a queue-layout of any 3-tree, and thus
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the stellated K3, with O(1) queues. Hence our result disproves the first con-
jecture of Pemmaraju [15] mentioned above, and renews hope in an affirmative
answer to the above open problems. By Theorem B question (1) is equivalent to
the question of whether planar graphs have bounded track-number, which was
asked by H. de Fraysseix [private communication, 2000] in the context of graph
drawing. If planar graphs have bounded track-number then such graphs would
also admit 3D drawings with O(n) volume, which is an open problem due to
Felsner et al. [§]. The authors recently proved that planar graphs and graphs of
bounded degree have 3D drawings with O(n3/2) volume [7].
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