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Abstract. A tree-partition of a graph is a partition of its vertices into
‘bags’ such that contracting each bag into a single vertex gives a forest.
It is proved that every k-tree has a tree-partition such that each bag
induces a (k − 1)-tree, amongst other properties. Applications of this
result to two well-studied models of graph layout are presented. First
it is proved that graphs of bounded tree-width have bounded queue-
number, thus resolving an open problem due to Ganley and Heath [2001]
and disproving a conjecture of Pemmaraju [1992]. This result provides
renewed hope for the positive resolution of a number of open problems
regarding queue layouts. In a related result, it is proved that graphs of
bounded tree-width have three-dimensional straight-line grid drawings
with linear volume, which represents the largest known class of graphs
with such drawings.

1 Introduction

This paper considers two models of graph layout. The first, called a queue layout,
consists of a total order of the vertices, and a partition of the edges into queues,
such that no two edges in the same queue are nested [11,12,15,17,20]. The dual
concept of a stack layout (or book embedding), is defined similarly, except that
no two edges in the same stack may cross. The minimum number of queues
(respectively, stacks) in a queue (stack) layout of a graph is its queue-number
(stack-number). Applications of queue layouts include parallel process schedul-
ing, fault-tolerant processing, matrix computations, and sorting networks (see
[15]). We prove that graphs of bounded tree-width have bounded queue-number,
thus solving an open problem due to Ganley and Heath [9], who proved that
stack-number is bounded by tree-width, and asked whether an analogous re-
lationship holds for queue-number. This result has significant implications for
other open problems in the field.

The second model of graph layout considered is that of a three-dimensional
(straight-line grid) drawing [2,3,5,8,14,20]. Here vertices are positioned at grid-
points in Z

3, and edges are drawn as straight line-segments with no crossings.
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While graph drawing in the plane is well-studied, there is a growing body of
research in three-dimensional graph drawing. Applications include information
visualisation, VLSI circuit design, and software engineering (see [5]). We focus
on three-dimensional drawings with small volume, and prove that graphs of
bounded tree-width have three-dimensional drawings with O(n) volume, which
is the largest known class of graphs admitting such drawings. The best previous
bound was O(n log2 n).

To prove the above results, we employ a structure called a tree-partition
of a graph, which consists of a partition of the vertices into ‘bags’ such that
contracting each bag to a single vertex gives a forest. In a result of independent
interest, we prove that every k-tree has a tree-partition such that each bag
induces a connected (k−1)-tree, amongst other properties. The second tool that
we use is a track layout, which consists of a vertex-colouring and a total order of
each colour class, such that between any two colour classes no two edges cross.
We prove that every graph has a track layout where the number of tracks is
bounded by a function of the graph’s tree-width.

The remainder of the paper is organised as follows. Section 2 recalls a number
of definitions and well-known results. In Section 3 we prove the above-mentioned
theorem concerning tree-partitions of k-trees. In Section 4 we establish our re-
sults for track layouts. Combining these with earlier work in the companion
papers [5,20], in Section 5 we prove our theorems for queue layouts and three-
dimensional drawings. We discuss ramifications of our results for a number of
open problems in Section 6.

2 Preliminaries

We consider undirected, simple, and finite graphs G with vertex set V (G) and
edge set E(G). The number of vertices and maximum degree of G are respectively
denoted by n = |V (G)| and ∆(G). The subgraph induced by a set of vertices
A ⊆ V (G) is denoted by G[A]. A graph H is a minor of G if H is isomorphic to
a graph obtained from a subgraph of G by contracting edges. A family of graphs
closed under taking minors is proper if it is not the class of all graphs.

A graph parameter is a function α that assigns to every graph G a non-
negative integer α(G). Let G be a family of graphs. By α(G) we denote the
function f : N → N, where f(n) is the maximum, taken over all n-vertex graphs
G ∈ G, of α(G). We say G has bounded α if α(G) ∈ O(1). A graph parameter
α is bounded by a graph parameter β, if there exists a function f such that
α(G) ≤ f(β(G)) for every graph G.

A k-tree for some k ∈ N is defined recursively as follows. The empty graph is
a k-tree, and the graph obtained from a k-tree by adding a new vertex adjacent
to each vertex of a clique with at most k vertices is a k-tree. This definition
is by Reed [16]. The following more common definition of a k-tree, which we
call ‘strict’, was introduced by Arnborg and Proskurowski [1]. A k-clique is a
strict k-tree, and the graph obtained from a strict k-tree by adding a new vertex
adjacent to each vertex of a k-clique is a strict k-tree. Obviously the strict k-trees
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are a proper sub-class of the k-trees. The tree-width of a graph G, denoted by
tw(G), is the minimum k such that G is a subgraph of a k-tree (which equals
the minimum k such that G is a subgraph of a strict k-tree [16]). Note that k-
trees can be characterised as the chordal graphs with no clique on k +2 vertices.
Graphs with tree-width at most one are the forests. Graphs with tree-width
at most two are the series-parallel graphs, defined as those graphs with no K4
minor.

Let G be a graph. A total order σ = (v1, v2, . . . , vn) of V (G) is called a
vertex-ordering of G. Suppose G is connected. The depth of a vertex vi in σ is
the graph-theoretic distance between v1 and vi in G. We say σ is a breadth-first
vertex-ordering if for all vertices v <σ w, the depth of v in σ is no more than the
depth of w in σ. Vertex-orderings, and in particular, vertex-orderings of trees
will be used extensively in this paper. Consider a breadth-first vertex-ordering
σ of a tree T such that vertices at depth d ≥ 1 are ordered with respect to the
ordering of vertices at depth d− 1. In particular, if v and x are vertices at depth
d with respective parents w and y at depth d−1 with w <σ y then v <σ x. Such
a vertex-ordering is called a lexicographical breadth-first vertex-ordering of T .

3 Tree-Partitions

Let G be a graph and let T be a tree. An element of V (T ) is called a node. Let
{Tx ⊆ V (G) : x ∈ V (T )} be a set of subsets of V (G) indexed by the nodes of T .
Each Tx is called a bag. The pair (T, {Tx : x ∈ V (T )}) is a tree-partition of G if:

– ∀ distinct nodes x and y of T , Tx ∩ Ty = ∅, and
– ∀ edge vw of G, either

• ∃ node x of T with v ∈ Tx and w ∈ Tx (vw is an intra-bag edge), or
• ∃ edge xy of T with v ∈ Tx and w ∈ Ty (vw is an inter-bag edge).

The main property of tree-partitions that has been studied is the maximum
size of a bag, called the width of the tree-partition. The minimum width over all
tree-partitions of a graph G is the tree-partition-width of G, denoted by tpw(G).
Ding and Oporowski [4] proved that tpw(G) ≤ 24 tw(G) · max{1, ∆(G)}, and
Seese [19] proved that tw(G) ≤ 2 tpw(G) − 1, for every graph G.

Theorem 1 below provides a tree-partition of a k-tree with additional features
besides small width (see Figure 1). First, the subgraph induced by each bag is a
connected (k−1)-tree. This allows us to perform induction on k. Second, in each
non-root bag Tx, the vertices in the parent bag of x with a neighbour in Tx form
a clique. This feature is crucial in the intended application (Theorem 2). Finally
the bound on the tree-partition-width represents a constant-factor improvement
over the above result by Ding and Oporowski [4] in the case of k-trees.

Theorem 1. Let G be a k-tree with maximum degree ∆. Then G has a rooted
tree-partition (T, {Tx : x ∈ V (T )}) such that for all nodes x of T ,
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Fig. 1. Tree-partition of a 3-tree.

(a) if x is a non-root node of T and y is the parent node of x, then the vertices
in Ty with a neighbour in Tx form a clique Cx of G, and

(b) the induced subgraph G[Tx] is a connected (k − 1)-tree.

Furthermore the width of (T, {Tx : x ∈ V (T )}) is at most max{1, k(∆ − 1)}.

Proof. We assume G is connected, since if G is not connected then a tree-
partition of G that satisfies the theorem can be determined by adding a new
root node with an empty bag which is adjacent to the root node of a tree-
partition of each connected component of G. It is well-known1 that for every
vertex r of the k-tree G, there is a vertex-ordering σ = (v1, v2, . . . , vn) of G with
v1 = r, such that for all 1 ≤ i ≤ n,

(i) Gi = G[{v1, v2, . . . , vi}] is connected and the vertex-ordering of Gi induced
by σ is a breadth-first vertex-ordering of Gi.

(ii) the neighbours of vi in Gi form a clique Ci = {vj : vivj ∈ E(G), j < i} with
1 ≤ |Ci| ≤ k (unless i = 1 in which case Ci = ∅).

Let r be a vertex of minimum degree Then deg(r) ≤ k. Let σ =
(v1, v2, . . . , vn) be a vertex-ordering of G with v1 = r, and satisfying (i) and
(ii). By (i), the depth of each vertex vi in σ is the same as the depth of vi in the
vertex-ordering of Gj induced by σ, for all j ≥ i. We therefore simply speak of
the depth of vi. Let Vd be the set of vertices of G at depth d.

Claim: For all 1 ≤ i ≤ n, in every connected component Z of Gi[Vd], the set of
vertices at depth d − 1 with a neighbour in Z form a clique of G, for all d ≥ 1.

1 In the language of chordal graphs, σ is a (reverse) perfect elimination vertex-ordering
and can be determined, for example, by the Lex-BFS algorithm of Rose et al. [18].
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Proof. We proceed by induction on i. The result is trivially true for i = 1.
Suppose it is true for i − 1. Let d be the depth of vi. Each vertex in Ci is at
depth d − 1 or d. Let C ′

i be the set of vertices in Ci at depth d, and let C ′′
i be

the set of vertices in Ci at depth d − 1. Thus C ′
i and C ′′

i are both cliques with
Ci = C ′

i ∪ C ′′
i . Furthermore, if i > 1 then vi must have a neighbour at depth

d − 1, and thus C ′′
i �= ∅. Let X be the vertex set of the connected component

of Gi[Vd] such that vi ∈ X. By induction, for all d′ ≤ d, the claim holds for
all connected components Y of Gi[Vd′ ] with Y �= X, since such a Y is also a
connected component of Gi−1[Vd′ ].

Case 1. C ′
i = ∅: Then vi has no neighbours in Gi at depth d; that is, X = {vi}.

Thus the set of vertices at depth d − 1 with a neighbour in X is precisely the
clique Ci = C ′′

i .
Case 2. C ′

i �= ∅: The neighbourhood of vi in X forms a non-empty clique
(namely C ′

i). Thus X \vi is the vertex-set of a connected component of Gi−1[Vd].
Let Y be the set of vertices at depth d−1 with a neighbour in X\vi. By induction,
Y is a clique. Since C ′′

i ∪C ′
i is a clique, C ′′

i ⊆ Y . Thus the set of vertices at depth
d − 1 with a neighbour in X is the clique Y . �


Define a graph T and a partition {Tx : x ∈ V (T )} of V (G) indexed by the
nodes of T as follows. There is one node x in T for every connected component
of each G[Vd], whose bag Tx is the vertex-set of the corresponding connected
component. We say x and Tx are at depth d. Clearly a vertex in a depth-d bag
is also at depth d. The (unique) node of T at depth zero is called the root node.
Let two nodes x and y of T be connected by an edge if there is an edge vw of
G with v ∈ Tx and w ∈ Ty. Thus (T, {Tx : x ∈ V (T )}) is a ‘graph-partition’.
We now prove that in fact T is a tree. First observe that T is connected since
G is connected. By definition, nodes of T at the same depth d are not adjacent.
Moreover nodes of T can be adjacent only if their depths differ by one. Thus T
has a cycle only if there is a node x in T at some depth d, such that x has at
least two distinct neighbours in T at depth d − 1. However, by the above claim
(with i = n), the set of vertices at depth d − 1 with a neighbour in Tx form a
clique (called Cx), and are hence in a single bag at depth d− 1. Thus T is a tree
and (T, {Tx : x ∈ V (T )}) is a tree-partition of G.

We now prove that each bag Tx induces a connected (k−1)-tree. This is true
for the root node since it only has one vertex. Suppose x is a non-root node of
T at depth d. Each vertex in Tx has at least one neighbour at depth d− 1. Thus
in the vertex-ordering of Tx induced by σ, each vertex vi ∈ Tx has at most k − 1
neighbours vj ∈ Tx with j < i. These neighbours induce a clique. Thus G[Tx] is
a (k − 1)-tree. By definition each G[Tx] is connected.

Finally, consider the size of a bag in T . We claim that each bag contains at
most max{1, k(∆−1)} vertices. The root bag has one vertex. Let x be a non-root
node of T with parent node y. Suppose y is the root node. Then Ty = {r}, and
thus |Tx| ≤ deg(r) ≤ k ≤ k(∆ − 1) assuming ∆ ≥ 2. If ∆ ≤ 1 then all bags
have one vertex. Now assume y is a non-root node. The set of vertices in Ty

with a neighbour in Tx forms the clique Cx. Let k′ = |Cx|. Thus k′ ≥ 1, and
since Cx ⊆ Ty and G[Ty] is a (k − 1)-tree, k′ ≤ k. A vertex v ∈ Cx has k′ − 1
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neighbours in Cx and at least one neighbour in the parent bag of y. Thus v has
at most ∆ − k′ neighbours in Tx. Hence the number of edges between Cx and
Tx is at most k′(∆ − k′). Every vertex in Tx is adjacent to a vertex in Cx. Thus
|Tx| ≤ k′(∆ − k′) ≤ k(∆ − 1). This completes the proof. �


4 Track Layouts

A colouring of a graph G is a partition {Vi : i ∈ I} of V (G), where I is a set of
colours, such that for every edge vw of G, if v ∈ Vi and w ∈ Vj then i �= j. Each
set Vi is called a colour class. If <i is a total order of a colour class Vi, then we
call the pair (Vi, <i) a track. If {Vi : i ∈ I} is a colouring of G, and (Vi, <i) is a
track for each colour i ∈ I, then we say {(Vi, <i) : i ∈ I} is a track assignment
of G indexed by I. At times it will be convenient to also refer to a colour i ∈ I
and the colour class Vi as a track. The precise meaning will be clear from the
context. A t-track assignment is a track assignment with t tracks. An X-crossing
in a track assignment consists of two edges vw and xy such that v <i x and
y <j w, for distinct tracks Vi and Vj . A t-track assignment with no X-crossing
is called a t-track layout. The track-number of a graph G, denoted by tn(G), is
the minimum t such that G has a t-track layout.

Dujmović et al. [5] first introduced track layouts2, and proved that track-
number is bounded by path-width. In particular, tn(G) ≤ pw(G) + 1 for every
graph G, where pw(G) denotes the path-width of G. In what follows we prove
that track-number is bounded by tree-width. First consider the case of trees. The
following result is implicit in the proof by Felsner et al. [8] that every outerplanar
graph has a three-dimensional drawing with linear volume (see Figure 2).

Lemma 1. [8] Every tree T has a 3-track layout.

Fig. 2. A 3-track layout of a tree.

Let {(Vi, <i) : i ∈ I} be a track layout of a graph G. We say a clique C of
G covers the set of tracks {i ∈ I : C ∩ Vi �= ∅}. Let S be a set of cliques of
G. Suppose there is a total order � on S such that for all cliques C1, C2 ∈ S,
if there exists a track i ∈ I, and vertices v ∈ Vi ∩ C1 and w ∈ Vi ∩ C2 with
v <i w, then C1 ≺ C2. Then we say � is nice, and S is nicely ordered by the
track layout. The proof of the next lemma is elementary.
2 A track layout was called an ‘ordered layering with no X-crossing and no intra-

layer edges’ in [5,6,20]. Similar structures are implicit in [8,11,12,17]. Note that this
definition of track-number is unrelated to that of Gyárfás and West [10].
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Lemma 2. [6] Let L ⊆ I be a set of tracks in a track layout {(Vi, <i) : i ∈ I}
of a graph G. If S is a set of cliques, each of which covers L, then S is nicely
ordered by the given track layout.

Theorem 2. Track-number is bounded by tree-width. In particular, every graph
G with tree-width tw(G) ≤ k has track-number tn(G) ≤ tk = 3k · 6(4k−3k−1)/9.

Proof. If G is not a k-tree then add edges to G to obtain a k-tree containing
G as a subgraph. It is well-known that a graph with tree-width at most k is a
spanning subgraph of a k-tree. These extra edges can be deleted once we are
done. We proceed by induction on k with the following induction hypothesis:

For all k ∈ N, there exist constants sk and tk, and sets I and S such that

1. |I| = tk and |S| = sk,
2. each element of S is a subset of I, and
3. every k-tree G has a tk-track layout indexed by I, such that for every clique

C of G, the set of tracks that C covers is in S.

Consider the base case with k = 0. A 0-tree G has no edges and thus has
a 1-track layout. Let I = {1} and order V1 = V (G) arbitrarily. Thus t0 = 1,
s0 = 1, and S = {{1}} satisfy the hypothesis for every 0-tree. Now suppose the
result holds for k − 1, and G is a k-tree. Let (T, {Tx : x ∈ V (T )}) be a tree-
partition of G described in Theorem 1, where T is rooted at r. By Theorem 1
each induced subgraph G[Tx] is a (k − 1)-tree. By induction, there are sets I
and S with |I| = tk−1 and |S| = sk−1, such that for every node x of T , the
induced subgraph G[Tx] has a tk−1-track layout indexed by I. For every clique
C of G[Tx], if C covers L ⊆ I then L ∈ S. Assume I = {1, 2, . . . , tk−1} and
S = {S1, S2, . . . , Ssk−1}. By Theorem 1, for each non-root node x of T , if p is
the parent node of x, then the set of vertices in Tp with a neighbour in Tx form
a clique Cx. Let α(x) = i where Cx covers Si. Let α(r) = 1.

To construct a track layout of G we first construct a track layout of T indexed
by {(d, i) : d ≥ 0, 1 ≤ i ≤ sk−1}, where the track Ld,i consists of nodes x of T at
depth d with α(x) = i. Here the depth of a node x is the distance in T from the
root node r to x. We order the nodes of T within the tracks by increasing depth.
There is only one node at depth d = 0. Suppose we have determined the orders
of the nodes up to depth d − 1 for some d ≥ 1. Let i ∈ {1, 2, . . . , sk−1}. The
nodes in Ld,i are ordered primarily with respect to the relative positions of their
parent nodes (at depth d−1). More precisely, let ρ(x) denote the parent node of
each x ∈ Ld,i. For all nodes x and y in Ld,i, if ρ(x) and ρ(y) are in the same track
and ρ(x) < ρ(y) in that track, then x < y in Ld,i. For x and y with ρ(x) and
ρ(y) on distinct tracks, the relative order of x and y is not important. It remains
to specify the order of nodes in Ld,i with a common parent. Suppose P is a set
of nodes in Ld,i with a common parent node p. By construction, for every node
x ∈ P , the parent clique Cx covers Si in the track layout of G[Tp]. By Lemma 2
the cliques {Cx : x ∈ P} are nicely ordered by the track layout of G[Tp]. Let
the order of P in track Ld,i be specified by a nice ordering of {Cx : x ∈ P}, as
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Fig. 3. Nodes with a common parent p.

illustrated in Figure 3. This construction defines a partial order on the nodes
in track Ld,i that can be arbitrarily extended to a total order. Hence we have a
track assignment of T . Since the nodes in each track are ordered primarily with
respect to the relative positions of their parent nodes in the previous tracks,
there is no X-crossing, and hence we have a track layout of T .

To construct a track assignment of G from the track layout of T , replace each
track Ld,i by tk−1 ‘sub-tracks’, and for each node x of T , insert the track layout
of G[Tx] in place of x on the sub-tracks corresponding to the track containing
x. More formally, the track assignment of G is indexed by {(d, i, j) : d ≥ 0, 1 ≤
i ≤ sk−1, 1 ≤ j ≤ tk−1}. Each track Vd,i,j consists of those vertices v of G such
that, if Tx is the bag containing v, then x is at depth d in T , α(x) = i, and v is
on track j in the track layout of G[Tx]. If x and y are distinct nodes of T with
x < y in Ld,i, then v < w in Vd,i,j , for all vertices v ∈ Tx and w ∈ Ty on track
j. If v and w are vertices of G on track j in bag Tx at depth d, then the relative
order of v and w in Vd,α(x),j is the same as in the track layout of G[Tx].

Clearly adjacent vertices of G are in distinct tracks. Thus we have defined a
track assignment of G. We claim that there is no X-crossing. Clearly an intra-
bag edge of G is not in an X-crossing with an edge not in the same bag. By
induction, there is no X-crossing between intra-bag edges in a common bag.
Since there is no X-crossing in the track layout of T , inter-bag edges of G which
are mapped to edges of T without a common parent node, are not involved in
an X-crossing. Consider a parent node p in T . For each child node x of p, the
vertices in Tp adjacent to a vertex in Tx forms the clique Cx. Thus there is no
X-crossing between a pair of edges both from Cx to Tx, since the vertices of Cx

are on distinct tracks. Consider two child nodes x and y of p. For there to be
an X-crossing between an edge from Tp to Tx and an edge from Tp to Ty, the
nodes x and y must be on the same track in the track layout of T . Suppose
x < y in this track. By construction, Cx and Cy cover the same set of tracks,
and Cx � Cy in the corresponding nice ordering. Thus for any track containing
vertices v ∈ Cx and w ∈ Cy, v ≤ w in that track. Since all the vertices in Tx

are to the left of the vertices in Ty (on a common track), there is no X-crossing
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between an edge from Tp to Tx and an edge from Tp to Ty. Therefore there is
no X-crossing, and hence we have a track layout of G.

We now ‘wrap’ the track layout of G. Define a track assignment of G indexed
by

{
(d′, i, j) : d′ ∈ {0, 1, 2}, 1 ≤ i ≤ sk−1, 1 ≤ j ≤ tk−1

}
, where each track

Wd′,i,j =
⋃ {Vd,i,j : d ≡ d′ (mod 3)}. If v ∈ Vd,i,j and w ∈ Vd+3,i,j then v < w

in the order of Wd′,i,j (where d′ = d mod 3). The order of each Vd,i,j is preserved
in Wd′,i,j . The tracks {Wd′,i,j : d′ ∈ {0, 1, 2}, 1 ≤ i ≤ sk−1, 1 ≤ j ≤ tk−1} forms
a track assignment of G. For every edge vw of G, the depths of the bags in T
containing v and w differ by at most one. Thus in the wrapped track assignment
of G, adjacent vertices remain on distinct tracks, and there is no X-crossing.
The number of tracks is 3 · sk−1 · tk−1. Every clique C of G is either contained
in a single bag of the tree-partition or is contained in two adjacent bags. Let
S′ =

{{(d′, i, h) : h ∈ Sj} : d′ ∈ {0, 1, 2}, 1 ≤ i, j ≤ sk−1
}
. For every clique

C of G contained in a single bag, the set of tracks containing C is in S′. Let
S′′ =

{{(d′, i, h) : h ∈ Sj} ∪ {((d′ + 1) mod 3, p, h) : h ∈ Sq} : d′ ∈ {0, 1, 2}, 1 ≤
i, j, p, q ≤ sk−1

}
. For every clique C of G contained in two bags, the set of

tracks containing C is in S′. Observe that S′ ∪ S′′ is independent of G. Hence
S′ ∪ S′′ satisfies the hypothesis for k. Now |S′| = 3s2

k−1 and |S′′| = 3s4
k−1, and

thus |S′ ∪ S′′| = 3s2
k−1(s

2
k−1 + 1). Therefore any solution to the recurrences

{s0 ≥ 1, t0 ≥ 1, sk ≥ 3s2
k−1(s

2
k−1 + 1), tk ≥ 3sk−1 · tk−1} satisfies the

theorem. It is easily verified that sk = 6(4k−1)/3 and tk = 3k · 6(4k−3k−1)/9 is
such a solution. �


A number of refinements to the proof of Theorem 2 that result in improved
bounds are possible [6]. For example, in the case of tw(G) = 2, we prove that
tn(G) ≤ 18, whereas Theorem 2 proves that tn(G) ≤ 54. One such refinement
uses strict k-trees. From an algorithmic point of view, the disadvantage of using
strict k-trees is that at each recursive step, extra edges must be added to enlarge
the graph into a strict k-tree, whereas when using (non-strict) k-trees, extra
edges need only be added at the beginning of the algorithm.

If maximum degree as well as tree-width is bounded then the dependence on
the tree-width in our track-number bound can be substantially reduced.

Theorem 3. Every graph G with maximum degree ∆(G), tree-width tw(G), and
tree-partition-width tpw(G), has track-number tn(G) ≤ 3 tpw(G) ≤ 72 tw(G) ·
max{1, ∆(G)}.

Proof. Let (T, {Tx : x ∈ V (T )}) be a tree-partition of G with width tpw(G). By
Lemma 1, T has a 3-track layout. Replace each track by tpw(G) ‘sub-tracks’,
and for each node x in T , place the vertices in Tx on the sub-tracks replacing the
track containing x, with at most one vertex in Tx on a single track. The total
order of each sub-track preserves the total order in each track of the track-layout
of T . There is no X-crossing, since in the track layout of T , adjacent nodes are
on distinct tracks and there is no X-crossing. Thus we have a track layout of G
with 3 tpw(G) ≤ 72 tw(G) · max{1, ∆(G)} tracks [4]. �
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5 Queue Layouts and 3D Graph Drawings

A queue layout of a graph G consists of a vertex-ordering σ of G, and a partition
of E(G) into queues, such that no two edges in the same queue are nested with
respect to σ. That is, there are no edges vw and xy in a single queue with v <σ

x <σ y <σ w. A similar concept is that of a stack layout (or book embedding),
which consists of a vertex-ordering σ of G, and a partition of E(G) into stacks (or
pages) such that there are no edges vw and xy in a single stack with v <σ x <σ

w <σ y. The minimum number of queues (respectively, stacks) in a queue (stack)
layout of G is called the queue-number (stack-number or page-number) of G, and
is denoted by qn(G) (sn(G)). Ganley and Heath [9] proved that stack-number
is bounded by tree-width, and asked whether queue-number is also bounded
by tree-width? The bound of sn(G) ≤ tw(G) + 1 by Ganley and Heath [9] has
recently been improved to sn(G) ≤ tw(G) by Lin and Li [13].

A 1-tree has queue-number at most one, since in a lexicographical breadth-
first vertex-ordering of a tree no two edges are nested [12]. Rengarajan and Veni
Madhavan [17] proved that 2-trees have queue-number at most three. Wood [20]
proved that queue-number is bounded by path-width and tree-partition-width.
In particular, qn(G) ≤ pw(G) and qn(G) ≤ 3

2 tpw(G) for every graph G. Hence
qn(G) ≤ 36 tw(G) · max{1, ∆(G)} by the result of Ding and Oporowski [4].
Wood [20] also proved that qn(G) ≤ tn(G)−1 for every graph G. Thus Theorem 2
implies the following result, which answers the above question of Ganley and
Heath [9] in the affirmative. Further consequences are discussed in Section 6.

Theorem 4. Queue-number is bounded by tree-width. In particular, every graph
G with tree-width tw(G) ≤ k has queue-number qn(G) < 3k · 6(4k−3k−1)/9.

A three-dimensional straight-line grid drawing of a graph, henceforth called a
3D drawing, represents the vertices by distinct points in Z

3 (called grid-points),
and represents each edge as a line-segment between its end-vertices, such that
edges only intersect at common end-vertices, and an edge only intersects a vertex
that is an end-vertex of that edge. In contrast to the case in the plane, it is
well known that every graph has a 3D drawing. We therefore are interested in
optimising certain measures of the aesthetic quality of a drawing. If a 3D drawing
is contained in an axis-aligned box with side lengths X − 1, Y − 1 and Z − 1,
then we speak of a X × Y × Z drawing with volume X · Y · Z. We study 3D
drawings with small volume.

Cohen et al. [2] proved that every graph has a 3D drawing with O(n3) vol-
ume, and this bound is asymptotically tight for Kn. It is therefore of interest to
identify fixed graph parameters that allow for 3D drawings with o(n3) volume.
Pach et al. [14] proved that graphs of bounded chromatic number have 3D draw-
ings with O(n2) volume, and that this bound is asymptotically optimal for Kn,n.
The first non-trivial O(n) volume bound was established by Felsner et al. [8] for
outerplanar graphs. Dujmović et al. [5,20] proved that track layouts, queue lay-
outs, and 3D drawings with small volume are inherently related.
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Theorem 5. [5,20] Every n-vertex graph G has a O(tn(G))×O(tn(G))×O(n)
drawing. Let F(n) be a family of functions closed under multiplication, such as
O(1) or O(polylog n). Then for any graph family G, every graph G ∈ G has
a F(n) × F(n) × O(n) drawing if and only if the track-number tn(G) ∈ F(n).
Moreover, if G is proper minor-closed then G has track-number tn(G) ∈ F(n) if
and only if G has queue-number qn(G) ∈ F(n).

Applying Theorem 5, Dujmović et al. [5] proved that every graph G has a 3D
drawing with O(pw(G)2 · n) volume, which is O(n log2 n) for graphs of bounded
tree-width. Using the result of Rengarajan and Veni Madhavan [17] discussed in
Section 5, Wood [20] proved that series-parallel graphs have 3D drawings with
O(n) volume, but with a constant of at least 1016. For particular sub-classes of
series-parallel graphs, improved constants have been obtained [3].

Wood [20] proved that graphs of bounded tree-partition-width have 3D draw-
ings with O(n) volume, although the actual volume bound is approximately
O(tw(G)4(tw(G)2 tpw(G))tw(G)2 · n). Theorems 3 and 5 together prove the fol-
lowing result, which represents a substantial improvement in the dependence on
tpw(G) compared with the above-mentioned result.

Theorem 6. Every n-vertex graph G with bounded tree-partition-width, which
includes graph of bounded tree-width and bounded degree, has a 3D drawing with
O(n) volume. In particular, the drawing is O(tpw(G))×O(tpw(G))×O(n), which
is O(tw(G) ∆(G)) × O(tw(G) ∆(G)) × O(n).

Theorems 2 and 5 together prove our main result of this section.

Theorem 7. Every n-vertex graph G with bounded tree-width has a 3D drawing
with O(n) volume. In particular, the drawing is O(64tw(G)

) × O(64tw(G)
) × O(n).

As well as providing many new classes of graphs that admit 3D drawings
with O(n) volume, Theorem 7 dramatically improves the constant in the bound
for series-parallel graphs. As mentioned in Section 4, such graphs have 18-track
layouts. It follows that every series-parallel graph has a 36×37×37� n

18� drawing.

6 Open Problems

Consider the following open problems: (1) Do planar graphs have bounded queue-
number? (2) Is queue-number bounded by stack-number? Since planar graphs
have bounded stack-number, the second question is more general than the first.
Heath et al. [11] conjectured that both of these questions have an affirmative
answer. More recently however, Pemmaraju [15] conjectured that the ‘stellated
K3’, a planar 3-tree, has Θ(log n) queue-number, and provided evidence to sup-
port this conjecture (also see [9]). This suggested that the answers to the above
questions were both negative. In particular, Pemmaraju [15] and Heath [pri-
vate communication, 2002] conjectured that planar graphs have O(log n) queue-
number. However, Theorem 4 provides a queue-layout of any 3-tree, and thus
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the stellated K3, with O(1) queues. Hence our result disproves the first con-
jecture of Pemmaraju [15] mentioned above, and renews hope in an affirmative
answer to the above open problems. By Theorem 5, question (1) is equivalent to
the question of whether planar graphs have bounded track-number, which was
asked by H. de Fraysseix [private communication, 2000] in the context of graph
drawing. If planar graphs have bounded track-number then such graphs would
also admit 3D drawings with O(n) volume, which is an open problem due to
Felsner et al. [8]. The authors recently proved that planar graphs and graphs of
bounded degree have 3D drawings with O(n3/2) volume [7].
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10. A. Gyárfás and D. West. Multitrack interval graphs. In 26th Southeastern Conf.
on Combinat., Graph Theory and Comput., Congr. Numer. 109:109–116, 1995.

11. L. S. Heath, F. T. Leighton, and A. L. Rosenberg. Comparing queues and
stacks as mechanisms for laying out graphs. SIAM J. Disc. Math. 5:398–412, 1992.

12. L. S. Heath and A. L. Rosenberg. Laying out graphs using queues. SIAM J.
Comput. 21(5):927–958, 1992.

13. Y. Lin, and X. Li. Pagenumber and treewidth. Disc. Applied Math., to appear.
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