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Abstract. This paper presents a new parallel algorithm for nonrigid image reg-
istration using off-the-shelf supercomputers, or clusters of PCs. Our algorithm
realizes scalable registration for high resolution three-dimensional (3-D) images
by employing three techniques: (1) data distribution; (2) data-parallel processing;
and (3) dynamic load balancing. The experimental results show that our parallel
implementation on a cluster of 64 off-the-shelf PCs (with 128 processors) regis-
ters liver CT images of 512×512×159 voxels within 8 minutes while a sequential
implementation takes 12 hours. Furthermore, our implementation allows proces-
sors to use less memory, and thereby enables us to align 1024×1024×590 voxel
images, which is not easy for single processor systems due to the restrictions on
the memory space and the processing time.

1 Introduction

Nonrigid image registration, which defines a geometric relationship between each point
in the nonrigid images, is increasing its role in medical diagnosis. One problem for
this technique is a large amount of computation due to many degrees of freedom (DOF).
Therefore, to achieve intraoperative nonrigid registration, one major challenging problem
is how to reduce its computational cost without dropping the accuracy of alignment.

To realize fast nonrigid registration, high performance computing approaches have
been employed in recent works [1,2,3]. In [1], a shared memory multiprocessors reduced
the registration time for brain MR images of 256×256×100 voxels from one hour on one
processor to approximately a hundred seconds on 64 processors. On the other hand, [2,3]
employed clusters [4], or a distributed memory multiprocessors, which has advantages
of cost effectiveness and extensibility compared to shared memory multiprocessors.
In [2], a cluster of workstations realized intraoperative registration of segmented brain
images within 10 seconds. However, its speedup was below 8 on 16 processors due to
the imbalance of processor workloads. A cluster of off-the-shelf PCs also demonstrated
affine registration in [3], yielding a speedup of 6 on 10 processors.

Thus, a number of parallel registration algorithms have demonstrated the time ben-
efits of high performance computing. However, existing algorithms assume that every
processor holds the entire 3-D images. Therefore, the image size available on a parallel
system is strictly bounded by the memory space of one processor in the system. This
strict restriction is undesirable for high resolution image registration.
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In this paper, to demonstrate the space benefits of high performance computing, we
propose a parallel nonrigid registration algorithm for high resolution 3-D images. To
achieve this goal, we have parallelized a sequential algorithm [5,6] using a voxel-based
similarity measure based on information theory, which realizes robust multimodality
registration with no user interaction and preprocessing. Furthermore, we also have em-
ployed the following three techniques. First, data distribution enables us to increase the
data size available on a parallel system by dividing the entire 3-D image into partially
overlapped blocks and distributing them to processors. Second, data-parallel process-
ing realizes high performance registration since it allows processors to independently
process the divided blocks in parallel. At last, dynamic load balancing improves par-
allel efficiency by balancing processor workloads imbalanced due to the difference of
computational costs associated with each block.

2 Methods

To register the floating image F and the reference image R, our sequential base of
the registration algorithm [5, 6] optimizes a cost function associated with a similarity
measure between F and R in a coarse-to-fine manner. The cost function is given by

C(Φ) = −Csimilarity(R,T(F )), (1)

where T denotes a nonrigid transformation defined by hierarchical B-splines, Csimilarity
denotes a similarity measure based on normalized mutual information, and Φ denotes a
mesh of control points φi,j,k with uniform spacing δ in the image domain Ω. Any control
point φi,j,k has a status S(φi,j,k) determined by

S(φi,j,k) =
{

active, if M(ωi,j,k) > α
passive, otherwise, (2)

where α is a threshold and M is a statistical measure determined from φi,j,k’s 4δ×4δ×4δ
neighborhood domain ωi,j,k (described later in Section 3). During registration process,
active control points are allowed to move while passive control points stay fixed. That is,
the sequential algorithm optimizes C(Φ+), where Φ+ represents a set of active control
points, in order to simulate adaptive mesh refinement.

To find performance bottlenecks of this algorithm, we analyzed its behavior before
parallelizing it. We then found two bottlenecks: one is the gradient calculation required
for the optimization of C(Φ+) and the other is the similarity calculation required for
the evaluation of C(Φ+), accounting for 92% and 7% of total execution time, respec-
tively. In the gradient calculation, an active control point φi,j,k requires a local gradient
∂C/∂φi,j,k calculated from small local domain ωi,j,k. However, the gradient calculation
requires a large amount of computations since fine resolution meshes include a large
number of control points. Therefore, the gradient calculation is the key factor for high
performance registration. On the other hand, the similarity calculation mainly consists
of the construction of joint histogram h(R,T(F )). Although the similarity calculation
seems to be a small bottleneck, it also has to be parallelized to scale the parallel speedup.
Otherwise, asAmdahl’s law [7] says, the speedup for N processors is bounded by a factor
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Fig. 1. Image distribution. (a) No distribution, (b) Non-overlapped block distribution, and (c)
Partially overlapped block distribution with margin length l. For all 1 ≤ s ≤ N , processor Ps

holds subimage Fs and takes responsibility for calculation within subdomain Φs.

of limN→∞(100/(7 + 92/N)) < 15. That is, even on a large number of processors, the
speedup never reaches a factor of 15, if we avoid parallelizing the similarity calculation.
Therefore, to realize scalable registration, we as well as [1] have decided to parallelize
both the gradient calculation and the similarity calculation.

2.1 Data Distribution

To investigate which data fragments should be distributed to processors, we next analyzed
the memory usage of the sequential algorithm and then found that 3-D images take the
most, compared to other data such as histogram h(R,T(F )) and parameters Φ. Hence,
we have decided to divide the floating image F and the reference image R into blocks
and distribute them only at fine resolution levels. At coarse resolution levels where
the image size is small enough, we avoid data distribution since it can cause some
additional communications between processors, which drops program performance. In
the following, we assume that for all 1 ≤ s ≤ N , processor Ps holds subimages Fs and
Rs, or a portion of F and that of R, respectively.

We now describe how our algorithm divides the images into blocks. To determine
the block size, we have to consider the tradeoff between data distribution and program
performance. While the maximum block size corresponds to no data distribution (Fig.
1(a)), which brings the best performance but requires a larger amount of memory, the
minimum block size corresponds to non-overlapped block distribution (Fig. 1(b)), which
brings the minimum usage of memory but causes additional communication overheads.
Our approach for this issue is to divide the images into partially overlapped blocks with
an appropriate margin to avoid communications during data-parallel processing of the
similarity calculation and the gradient calculation (Fig. 1(c)). Here, assume that for all
1 ≤ s ≤ N , processor Ps takes responsibility for calculation within Ωs, where Ωs

denotes a non-overlapped subdomain of Ω. Then, our approach satisfies the following
two conditions C1 and C2, for all 1 ≤ s ≤ N .

– C1: For any active control point φi,j,k in subdomain Ωs, Fs contains neighborhood
domain ωi,j,k and Rs contains transformed neighborhood domain T(ωi,j,k).

– C2: For any point (x, y, z) in subdomain Ωs, Fs contains (x, y, z) and Rs contains
transformed point T(x, y, z).
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Both conditions C1 and C2 allow every processor to perform data-parallel processing
with no communication. That is, while condition C1 allows Ps to locally calculate
every gradient ∂C/∂φi,j,k within Ωs, condition C2 also allows Ps to create a local joint
histogram for Ωs, for all 1 ≤ s ≤ N .

Given the maximum length of valid deformations in v mm, the margin length l for
satisfying conditions C1 and C2 is determined by

l =d + 2 · δ such that d ≥ v, (3)

where d is the maximum permissible length for deformations in mm. (3) satisfies con-
dition C1 since l ≥ v + 2 · δ. It also satisfies condition C2 since l > v. Although
determining the accurate value for l seems difficult due to the difficulty of detecting v
before registration, we think that rough estimation based on users’ experiences can be
applied to practical use.

2.2 Dynamic Load Balancing for Gradient Calculation

Since adaptive mesh refinement causes active control points in a non-uniform distri-
bution, the workloads associated with each subdomain Ωs become imbalanced in the
compute-intensive gradient calculation. To address this performance issue, we analyzed
the control point distribution on 128 processors with some clinical images. In most
cases, approximately a quarter of 128 processors are responsible for more than 80% of
active control points. Therefore, the key issue for high performance registration is how
to scatter the 80% of active control points to the remaining three quarters.

To realize this, our algorithm employs two load-balancing strategies. One is for
coarse resolution levels where data distribution is unnecessary and the other is for fine
resolution levels where data distribution is necessary. For no data distribution scheme,
since every processor holds the entire images and knows which control points are active,
we dynamically assign active control points to processors in a round-robin manner. For
data distribution scheme, we apply a list scheduling algorithm [8] to place processors
into groups, in which the active control points are scattered for load balancing.

Let Φ+
s be a set of active control points in subdomain Ωs, where 1 ≤ s ≤ N . Then,

our algorithm places processors into groups by two steps:

1. Group Initialization:
Set the number of groups, M , as that of processors with more active control points
than the average: W ≡ ∑N

s=1 |Φ+
s |/N . Placing each of these high-loaded M pro-

cessors into groups gives group Gt = {Pt(1)}, where 1 ≤ t ≤ M and Pt(1) denotes
one of the M processors.

2. Group Construction:
Create a list, L, in which the remaining N − M processors are sorted by |Φ+

s | in an
ascending order. Then, from head to tail of L, any processor Ps ∈ L are added to
Gt such that W (Gt) is the maximum, where W (Gt) represents the average number
of active control points in Gt.

As a result, for all 1 ≤ t ≤ M , Gt consists of one high-loaded processor Pt(1) and some
low-loaded processors Pt(2), . . . , Pt(|Gt|), because a small portion of processors have a
large portion of active control points, as we mentioned before.
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Given group Gt, where 1 ≤ t ≤ M , to balance workloads, subimages with many
active control points, Ft(1) and Rt(1), and information on active control points Φ+

t(1) are
broadcasted to every processor Ps ∈ Gt. This broadcast enables low-loaded processors
to calculate ∂C/∂φi,j,k, for any φi,j,k ∈ Φ+

t(1). Thus, in addition to steps 1. and 2., our
algorithm parallelizes the gradient calculation by following steps:

3. Image Transmission:
For all 1 ≤ t ≤ M , the high-loaded processor Pt(1) broadcasts Ft(1) and Rt(1), and
information on active control points Φ+

t(1) to every processor Ps ∈ Gt.
4. Workload Distribution:

For all 1 ≤ t ≤ M , Φ+
t(1) is splitted into λt(1), λt(2), . . ., λt(|Gt|) such that |λt(1)| =

|λt(u) ∪ Φ+
t(u)| = W (Gt), where 2 ≤ u ≤ |Gt|.

5. Gradient Calculation:
For all 1 ≤ t ≤ M , processors Pt(1) and Pt(u), where 2 ≤ u ≤ |Gt|, independently
calculate gradients for λ1 and λu ∪ Φ+

t(u), respectively.
6. Result Distribution:

Processor P1 gathers the calculation results and broadcasts them to all processors
P1, P2, . . . , PN .

2.3 Data-Parallel Processing for Similarity Calculation

The similarity calculation is parallelized by data-parallel processing and the binary-swap
(BS) method [9], or a scalable method for parallel image compositing. The original pur-
pose of BS is to merge N local images into the final image, and this calculation is
similar to the similarity calculation, where processors independently construct N lo-
cal histograms by data-parallel processing and merge them into the global histogram
h(R,T(F )). One advantage of BS is high scalability which comes from parallel pro-
cessing and tree structured merging. On N processors, BS completes the data merging
in log N stages, and every processor participates in all stages of the merging process.

Our parallel similarity calculation consists of three steps. In the first step, for all
1 ≤ s ≤ N , Ps independently creates a local joint histogram hs for the subdomain
Ωs. In the second step, all created local histograms h1, h2, . . . , hN are merged into the
global histogram h(R,T(F )) by BS method. To do this, every processor is paired up.
Every pair of processors splits its local histogram into two pieces, and each processor
takes responsibility for one of the two pieces. Repeating this splitting and exchanging
with different pairs for log N stages generates the global histogram h(R,T(F )) in a
distributed manner. At last, Csimilarity(R,T(F )) is calculated from h(R,T(F )).

3 Results

To evaluate our parallel algorithm, we have implemented our algorithm on a cluster of
PCs by using the C++ language and MPICH-SCore library [10], which is a fast imple-
mentation of the Message Passing Interface (MPI) standard [11]. Our cluster consists
of 64 symmetric multiprocessor (SMP) nodes. Each node has two Pentium III 1GHz
processors and connects to a Myrinet switch [12] which provides bandwidth of 2Gb/s.
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Fig. 2. Execution time.

0

20

40

60

80

100

120

16 32 48 64 80 96 112 128

P
ar

al
le

l 
sp

ee
d

u
p

N: Number of processors

 Ideal
Dataset 1
Dataset 2
Dataset 3
Dataset 4

Fig. 3. Parallel speedup.

We applied our algorithm to four datasets of contrast-enhanced liver CT images,
which have a size of 512×512×159 voxels with spatial resolution of 0.67×0.67×1.25
mm. We refined Φ by three levels with spacing δ from 42.88 to 10.72 via 21.44 mm. The
original image was resampled to γ = 2.68, 1.34, and 0.67 mm at each of deformation
levels. As we mentioned in Section 2.1, this image resampling reduces the data size,
so that the images at levels Φ1 and Φ2 were small enough to avoid data distribution.
Therefore, to yield better performance, we distributed the images only at level Φ3.

From some experiments, we decided to employ two measures for determining control
point statuses S(φi,j,k): H(R, ωi,j,k), or the local image entropy for the subdomain ωi,j,k

as a reference image measure; and ||∂C/∂φi,j,k||, or the norm of the local gradient of
the cost function as a joint image pair measure. Since H(R, ωi,j,k) locally characterizes
the reference image R and ||∂C/∂φi,j,k|| describes the degree of image alignment, we
initialized S by using α = 0.65 · H(R) at the beginning of each deformation level and
updated it by using α = 0.005 · ||∂C/∂Φ+|| after the gradient calculation.

3.1 Registration Performance

Figures 2 and 3 show the total execution time and parallel speedup of our method, re-
spectively. On 128 processors, it reduces the registration time from 741 to approximately
8 minutes with high speedups ranging from a factor of 95 to 99. At this time, our method
accelerates the gradient calculation and the similarity calculation by a factor of 103 and
92, respectively. Both these high speedups contribute to the total speedup of 96. If we
avoid parallelizing the similarity calculation, the execution time on 128 processors can
be estimated as 84 minutes, resulting in a low speedup of 13. Thus, our implementation
realizes scalable registration. Next, the execution time for other processing, such as im-
age initialization and its resampling, reduces from 7.4 to 0.8 minutes with a speedup of 9.
This low speedup mainly comes from disk access required for image resampling which
takes about 25 seconds. Therefore, on a large number of processors, file input/output
can appear as a performance bottleneck.

To make clear the effect of our dynamic load balancing, we now compare the follow-
ing three methods: (1) (proposed) PDL, (2) PD, and (3) PL, where P represents parallel,
D represents data distribution, and L represents load balancing. Fig. 4 shows speedups
for the optimization at Φ3. On 128 processors, our PDL improves the speedup of PD
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Fig. 5. Optimization progress (PDL).

from a factor of 33 to 103. However, its speedup is less than a factor of 123 obtained by
PL. Thus, our method enables data distribution with less performance decreases.

In PD, Φ+
7 has the maximum of 185 active control points, so that processor P7 takes

that of 436.3 seconds for the gradient calculation. On the other hand, the execution time
in our PDL ranges from 56.4 to 94.7 seconds. Here, our dynamic load-balancing mech-
anism allows the bottleneck processor P7 to reduce its execution time by distributing
its workload to six low-loaded processors: P1, P29, P35, P49, P53 and P57. Besides, the
standard deviations of the execution time in PDL, PD, and PL are 9.28, 107.4 and 0.37,
respectively, so that our PDL achieves better load balancing compared to PD.

Although PDL requires data broadcasting from high-loaded to low-loaded proces-
sors, it takes only 1.1 seconds on our cluster. For all datasets, the amount of broadcasted
data is 28.8MB composed mainly of subimages Ft(1) and Rt(1) with many active con-
trol points, where 1 ≤ t ≤ M . Although |Gt| ranges from 2 to 7, the communication
imbalance associated with this broadcasting has little effect on the overall performance,
because the communication takes shorter time than the gradient calculation. However,
it can be a performance bottleneck on low-speed networks such as 100Mb/s Ethernet.

3.2 High Resolution Image Registration

Data distribution enables us to register images in a fine resolution level Φ4, where
δ = 5.36 and γ = 0.335 mm. Without data distribution, the optimization at Φ4 requires
more than 2GB memory, so that out-of-core computation occurs on our cluster. Since
this computation takes significant execution time, PL is no realistic method for high res-
olution image registration. On the other hand, PD can perform on-memory computation,
however, it takes 105 minutes on 128 processors while PDL takes 47 minutes. Thus, in
our PDL method, data distribution increases the image resolution available on a system
and dynamic load balancing reduces the execution time for image registration.

Fig. 5 shows the optimization progress on 128 processors. We obtain more accurate
results as the deformation level increases. At the finest level Φ4, NMI raises its value
by 0.015, where the total improvement is 0.067. Since Φ4 takes much longer time than
the former levels, deciding when the registration should be terminated is important for
clinical use, where a series of images can be produced in rapid succession.
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4 Conclusion

We have presented a parallel algorithm for nonrigid image registration on distributed
memory multiprocessors. To realize robust and scalable nonrigid registration for high
resolution 3-D images, our algorithm employs hierarchical FFDs described in [5,6] with
three techniques: (1) data distribution, (2) data-parallel processing, and (3) dynamic load
balancing. The experimental results show that our method performs nonrigid registration
of liver CT images of 512 × 512 × 159 voxels in less than 8 minutes on 128 processors,
which takes approximately 12 hours on a single processor. Moreover, our method re-
duces the amount of memory usage to less than 25%, enabling us to increase the image
resolution available on our system.

One future work includes to develop a methodology for detecting the margin length
during registration.
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