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Abstract. The computation of an optic flow field to reconstruct a dense
velocity field from a sequence of tagged MR images faces a major dif-
ficulty: a non-constant pixel intensity. In this paper, we resolved this
problem by regarding the MRI sequence as density images, which ad-
here to a principle of conservation of intensity. Based on this principle,
optic flow equations are developed based on Gaussian derivatives as dif-
ferential operators. The multiscale optic flow method is applied to cardiac
tagged MRI. A quantitative analysis is presented comparing the recon-
structed dense velocity field with a directly acquired velocity field using
the velocity-encoded (VEC) MRI.

1 Introduction

Motion analysis is becoming increasingly important in cardiovascular imaging.
The cine-MR tagging protocol [1] enables the inspection of myocardial motion,
because of temporary tag pattern in the myocardium wall. The tag pattern is
induced within a tissue, which will follow the tissue deformation. The tissue
motion is clearly visible through the deformed pattern.

Automatic reconstruction of a dense velocity field from tagged MRI is the
next step toward a detailed cardiac motion analysis. The velocity field can be
computed directly by following the apparent pixel movement, which can be de-
rived using optic flow (OF) methods [2]. A large number of different optic flow
methods have been proposed (see [3] for a comparison between various OF meth-
ods). However, only a few are proposed for extracting the dense OF field from
tagged MRI because of one major problem: the brightness variation problem.

In the OF computation, a constant pixel intensity is assumed. This is con-
tained in the formulation that a total derivative of the image function L is zero.

dL

dt
= 0 or ∇L · v = 0; v ∈ R

3 (1)
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The MR signal however, linearly depends on the accumulated protons in a certain
area. Therefore the tissue deformation causes variation in the pixel intensity due
to the divergence of the flow. The contribution of this paper is twofold:

– we propose a new dense optic flow framework, that does not assume a con-
stant pixel intensity, but a constant density. This greatly reduces the sensi-
tivity to brightness variation over time, and therefore enables a more reliable
reconstruction of a dense velocity field from tagging MR images, and

– we present the first direct comparison between reconstructed and directly
acquired (using VEC MRI) dense velocity field in clinically representative
cases.

The remainder of this paper is structured as follows. Section 2 discusses
our approach to the brightness variation problem in tagging MRI and the OF
method in detail. In Section 3, results from applying the optic flow method to
cardiac MR tagging sequences are presented, and statistically compared to the
corresponding velocity-encoded (VEC) MR images. Section 4 concludes with a
discussion.

2 Methodology

2.1 Conservation Principle in Tagging MRI

Let L : R
3 → R be a raw image function and Lv be the Lie derivative, a

generalization notion of the directional derivative of a function, with respect to a
spatiotemporal vector v ∈ R

3. The optic flow field is defined as a spatiotemporal
vector field that satisfies the following constraint

Lv L = 0 (2)

This is called the Optic Flow Constraint Equation (OFCE). It defines the math-
ematical concept of the optic flow field in a more general formulation than Eq. 1.

Florack et. al. defined two different kind of pixel flows in an image: scalar
and density images [4]. In scalar images, the pixel intensity is assumed to be
constant. Horn & Schunck’s OF equation [2] deals with these images. In density
images, the conserved quantity is not a single pixel value, but the intensity is
integrated over a local region. Pixel intensities in the density images may vary,
but its total integral is conserved: the local ”intensity mass” is preserved.

Tagging MRI is a typical example of density images, because the MR signal
is formed by the net magnetization of excited protons [5]. The total number of
protons in a tissue is preserved, even if the tissue is deformed. Optic flow analysis
of tagging MRI therefore greatly benefits from the derivation of OFCE based on
the density conservation principle.

Let Lρ : R
3 → R be a raw image function that holds the density images

property. The Lie derivative of Lρ with respect to a vector v is defined by taking
the derivative of the density function together with the vector field.

Lv Lρ =
3∑

µ=1

∂µ (Lρ vµ) = ∇ · (Lρ v) = 0 (3)



Optic Flow Computation from Cardiac MR Tagging 485

Equation 3 is the OFCE definition for the density images. It has an interest-
ing physical interpretation as the divergence of a vector v representing the rate
of expansion per unit volume under the flow. Thus it accounts for the change of
volume of the local integrated region. In the next sections, unless stated other-
wise, we use the notation of L for the density images.

2.2 The First Order Density Multiscale OFCE

Let vT = (w(x), u(x), v(x)), x ∈ R
3 be the optic flow vector, which equals

the spatiotemporal vector v in Eq. 2, but in a more general form. The function
w : R

3 → R+ is the temporal component and u, v : R
3 → R are the spatial

components in x and y directions respectively.
As the Lie derivative vanishes in Eq. 3, its convolution with a Gaussian kernel

in the scale-space framework also vanishes. Therefore Eq. 3 in the Gaussian scale-
space framework will be

−
∫

R3
L (∇φσ,τ · v) dx = 0, σ, τ ∈ R+ (4)

where φσ,τ is a three dimensional Gaussian kernel with an isotrophic spatial
scale σ and a temporal scale τ .

To eliminate the aperture problem [6], an additional constraint is required.
Since the exact cardiac motion is not a-priori known, we used a vector that is
perpendicular to the tangential vector as the additional constraint: the normal
flow constraint. If vT = (w, u, v) is the normal vector, then vT

t = (0,−v, u) is its
tangential vector. We can substitute v and vt into Eq. 4 to get a unique solution.

Another constraint is the temporal gauge constraint, which means fixing
w(x) → 1. This states that there are no creation or elimination of pixel in-
tensities. Using Eq. 4 for the normal and tangential vector and imposing the
temporal gauge condition, we can define the first order OFCE for the density
image. It consists of 8 unknowns (the two components of flow vectors and their
derivatives with respect to x, y and t) in 8 linear equations:

−Lt = Lxu + Lyv + τ2Lxtut + τ2Lytvt + (L + σ2Lxx)ux + σ2Lxyvx+
σ2Lxyuy + (L + σ2Lyy)vy

−Ltt = Lxtu + Lytv + (Lx + τ2Lxtt)ut + (Ly + τ2Lytt)vt + (Lt + σ2Lxxt)ux+
σ2Lxytvx + σ2Lxytuy + (Lt + σ2Lyyt)vy

−Lxt = Lxxu + Lxyv + τ2Lxxtut + τ2Lxytvt + (2Lx + σ2Lxxx)ux+
(Ly + σ2Lxxy)vx + σ2Lxxyuy + (Lx + σ2Lxyy)vy

−Lyt = Lxyu + Lyyv + τ2Lxytut + τ2Lyytvt + (Ly + σ2Lxxy)ux + σ2Lxyyvx+
(Lx + σ2Lxyy)uy + (2Ly + σ2Lyyy)vy

0 = −Lyu + Lxv − τ2Lytut + τ2Lxtvt − σ2Lxyux + (L + σ2Lxx)vx−
(L + σ2Lyy)uy + σ2Lxyvy

0 = Lytu − Lxtv + (Ly + τ2Lytt)ut − (Lx + τ2Lxtt)vt + σ2Lxytux−
(Lt + σ2Lxxt)vx + (Lt + σ2Lyyt)uy − σ2Lxytvy

0 = Lxyu − Lxxv + τ2Lxytut − τ2Lxxtvt + (Ly + σ2Lxxy)ux−
(2Lx + σ2Lxxx)vx + (Lx + σ2Lxxy)uy − σ2Lxxyvy

0 = Lyyu − Lxyv + τ2Lyytut − τ2Lxytvt + σ2Lxyyux − (Ly + σ2Lxxy)vx+
(2Ly + σ2Lyyy)uy − (Lx + σ2Lxyy)vy

(5)
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where Lµ is the image derivative in the Gaussian scale space representation,
defined as the convolution of the original image L (as the initial condition) with
the Gaussian derivative kernel φσ,τ in the µ dimension [7]. Although there are
derivatives of each velocity component in Eq. 5, we only present here the u and
v component, as x and y velocity component respectively.

2.3 The Multiscale Scheme

There is still one parameter left unexplored in Eq. 5: the scale parameters σ and
τ . The scale is a free parameter, however one proper scale is enough to get a
unique solution. Niessen et. al. [8] has studied a scale selection method based on
a numerical stability of the solution. The ”best result” is defined numerically as
the most stable solution of the linear equation system in Eq. 5. We applied the
same method, using the Frobenius norm of the coefficient matrix of Eq. 5 as the
stability measurement.

The next step after solving Eq. 5 is the integration of scale space, which
smoothes the output optic flow field [9]. We modified the energy minimization
in [9] into the convolution with Gaussian kernels.

Let ṽ(x),x ∈ R
3 be an optic flow vector after the integration and vσ,τ (x)

be an optic flow vector after the computation of Eq. 5 with spatial scale σ and
temporal scale τ . The notion of σ,τ in the vector v is added to incorporate the
scale selection scheme. The integration of scale space is given by the following
convolution process:

ṽµ(x0) =
∫

x∈R3
p(x0)vµ

σ,τ (x0)φσ,τ (x − x0)dx (6)

where µ is one of vector’s components, p(x) is a penalty function and φσ,τ (x) is
the Gaussian kernel. The penalty function p(x) in Eq. 6 is defined as:

p(x) = exp
(

−λ κ(x)
Nκ

)
(7)

where κ(x) is the Frobenius norm of the coefficient matrix of Eq. 5 at the spa-
tiotemporal position x. The value λ is a constant in the range of (0..1] and Nκ

is a normalization factor. The value of Eq. 7 decreases exponentially when κ is
large, which means that the more unstable solution contributes less in the final
optic flow result.

3 Experimental Results

The multiscale OF method for tagged MRI has been tested and validated on
several analytical images and tagging MRI of a phantom agar [10]. In this pa-
per, the method is applied to real cardiac tagged MR images from a number
of cardiac-healthy subjects. The OF method is restricted to estimate only for
in-planar motion (2D) in tagging MRI. The results are compared to directly
acquired VEC MRI.
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3.1 Clinical Data

Eight healthy volunteers were selected without history of valvular disease, proven
from echocardiography. VEC MRI images were acquired in a short-axis orien-
tation at a mid-ventricular level. A standard spoiled gradient-echo was applied
with velocity-encoding in three directions (maximal velocity sensitivity is 20
cm/s). Retrospective gating with delayed reconstruction was used to cover the
full cardiac cycle (30 phases). This acquisition was performed during free breath-
ing.

An MR tissue tagging sequence is used in the same short-axis orientation
and position for comparison. Rectangular grid tagging is performed with tag
grid spacing = 8.3 mm. Prospective triggering is used with maximum number of
heart phases reconstructed, resulting in typical 20-30 phases during one cardiac
cycle. This acquisition is performed under breath-holding (in expiration).

Both the VEC and tagging MR images for all patients were acquired in
the same study time, with same patient positioning. Due to different breathing
conditions, the left ventricular (LV) contours were drawn separately. Contours
for tagging images were drawn manually using a dedicated cardiac MR analytical
software package (MRI-MASS [11]). Contours were drawn in the regular short-
axis image, at the closest slice position to the tagging image, because of the
better visibility of the myocardial contours in (non-tagged) short-axis slices.
Contours for the VEC MRI were drawn manually in the through-plane velocity
image, because it gives clearer definition of the myocardial wall than the in-plane
velocity images.

In the analysis, time phases of tagging and VEC sequences were normalized
into a single cycle. Since the number of phases in tagging images was not equal,
we interpolated 30 time frames in tagging according to the time steps in the
VEC MRI.

3.2 Results

The region of interest is the LV myocardium. Figure 1 shows one sample result
of the OF field from a subject compared visually with their corresponding VEC
MR images at mid-systole and mid-diastole phases. Only vectors inside the LV
myocardium are shown. Notice how the tagging patterns are fading at later
phases.

For this comparison between VEC MRI and the computed OF from tagging,
we only looked at the in-plane motion of the VEC MRI. Therefore the z-velocity
components were discarded. We also looked at the global LV wall motion, instead
of regional wall motion, because the scope of this paper is to investigate how the
LV wall motion from optic flow globally relates to VEC MRI.

The LV wall undergoes two basic motions, i.e. radial and circumferential
components. The radial component defines contraction motion relative to the
center of the LV, while the circumferential defines the torsion movement. Figure 2
shows the comparison of the mean global radial and circumferential velocity
components between the computed OF and VEC MRI.
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(a) Mid-systole dense OF (b) Mid-diastole dense OF

(a) Mid-systole VEC (b) Mid-diastole VEC

Fig. 1. One sample comparison result between dense OF from tagging and VEC MRI.

Table 1. Correlation coefficients

Components Full cycle Systolic Diastolic
Radial r = 0.86 (SD = 0.04) r = 0.98 (SD = 0.01) r = 0.71 (SD = 0.13)
Circumferential r = 0.42 (SD = 0.17) r = 0.52 (SD = 0.18) r = 0.23 (SD = 0.29)

We calculated the correlation coefficient for each components to investigate
the relation between the OF and VEC MRI. As can be seen in Fig. 3, the OF and
the VEC radial velocity has high correlation (r = 0.86). This is not the case for
the circumferential velocity (r = 0.42). Also the radial velocity correlates better
at the systolic part of the cycle, while the diastolic half (second half cycle) is less
correlated (Tab. 1). In the scatter plot (Fig. 3), this phenomenon is shown by a
cluster of systolic plots (asterisk signs) and diastolic plots (plus signs).

4 Discussion

The circumferential component correlates less good (r = 0.42). This can be
explained by two factors. The circumferential movements in the VEC images
are more visually apparent than the circumferential movements in the tagging
images. This may be caused by the longer trigger delay time of the tagging
images, i.e. the rapid torsion at the start of the contraction is not sufficiently
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Fig. 2. Mean of global radial (left) and circumferential (right) components from 8
subjects.
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(a) Radial component (b) Circumferential component

Fig. 3. Scatter plot of radial (left) and circumferential (right) component. Asterik (’*’)
signs are the systolic part, while plus (’+’) signs are the diastolic part.

covered by the tagging sequence. Therefore we cannot expect the optic flow
method to produce the motion that is not sufficiently present in the image data.

Moreover the aperture problem was solved using the normal flow constraint,
which reduces all pixel motions to be in the direction of the image gradient. In
order to overcome this limitation, the normal flow constraint should be replaced
by a more knowledge-driven motion constraint. If we integrate a-priori knowledge
of the LV wall motion, for instance taking into account the torsion movement,
then it would be better to replace the normal flow constraint with this knowledge.

The computed dense OF field from tagged MRI shows a very good correlation
with the VEC MRI for the LV wall radial contraction. Especially in the systolic
part of the cardiac cycle this correlation is stronger (r = 0.98 in systole and
r = 0.71 in diastole). In most cases, the cardiac systolic function is clinically
more meaningful than the diastolic part. Systolic function gives information of
how well the heart can pump the blood to the whole body. From this, we conclude
that the proposed dense OF method shows a promising non-invasive technique
to assess the velocity field during the systolic part of the cardiac cycle.

The proposed method has the flexibility to be extended to 4D by adding one
more spatial component in the spatiotemporal vector definiton. The optic flow
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equations would become more complex and more additional constraint equations
are needed. This is the topic of ongoing research.
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