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Abstract. We describe an automated, model-based method to segment the left
and right ventricles in 4D tagged MR. We fit 3D epicardial and endocardial
surface models to ventricle features we extract from the image data. Excellent
segmentation is achieved using novel methods that (1) initialize the models and
(2) that compute 3D model forces from 2D tagged MR images. The 3D forces
guide the models to patient-specific anatomy while the fit is regularized via in-
ternal deformation strain energy of a thin plate. Deformation continues until the
forces equilibrate or vanish. Validation of the segmentations is performed
quantitatively and qualitatively on normal and diseased subjects.

1   Introduction

Cardiovascular disease is the leading cause of death for both men and women in most
developed countries. However, improved understanding of the regional heterogeneity
of myocardial contractility can lead to more accurate patient diagnosis and potentially
reduce its morbidity. SPAMM-MRI [1],[2] is a non-invasive technique for measuring
the motion of the heart by magnetically tagging parallel sheets of tissue at end-
diastole. The sheets appear as dark lines that deform during systole. Quantification of
the deformation requires accurate segmentation of the epicardial and endocardial
surfaces and tag sheets.
     A highly automated method is needed to make the technique clinically viable.
Previously, an expert anatomist required 5+ hours per subject to interactively segment
these structures. Segmenting the epicardial and endocardial surfaces typically takes
up 80% of the total extraction time. This paper presents an automated method for
extracting these surfaces. Prior to this paper, there have not been fully automated
methods to extract these surfaces from tagged cardiac MR for the following reasons:

• Image artifacts & noise must be suppressed and the tag lines must be removed.
• Features outlining the boundaries must be identified.
• The image data samples the heart coarsely and irregularly over space (Fig 1a).
• The geometry of the heart is complex making surfaces difficult to initialize.
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Due to the challenges, people have resorted to semi-automated methods that rely on
extensive human operator interaction. This paper presents the first fully-automated
model-based segmentation and it is composed of a sequence of steps:

1. Image processing methods are applied to prepare images for use by the models.
2. Image features are automatically extracted for model initialization.
3. Internal forces are defined to regularize the fit of the models.
4. A deformable model-fitting approach is employed, which balances the forces.

    We employ an automated model-based segmentation that segments 3D surfaces
rather than a set of 2D contours as in [5] because the 3D models enable integration of
constraints from all images. In this paper we propose novel methods for initializing
the models and for extracting 3D forces from the 2D images. Other researchers [7]
have fit surface models to cardiac data. However their methods were not directly
applicable to our objectives since our data is tagged and we have sparse, non-
uniformly arranged images. Other researchers [9], have extracted 3D myocardial
motion from tagged MR; however, their methods assume the segmentation is pro-
vided. This paper fills the void left by such researchers by providing an automated
method to obtain the required segmentation. The segmented surfaces will likely be
beneficial for (1) inter-subject alignment and (2) classical descriptors of cardiac func-
tion.

2   Methodology

2.1    Image Processing Methods to Prepare Images for Model Fitting   

We used a 1.5T GE MR imaging system to acquire the images, and an ECG-gated
tagged gradient echo pulse sequence. Every 30ms during systole, 2 sets of parallel
short axis (SA) images are acquired; one with horizontal tags and one with vertical
tags. These images are perpendicular to an axis through the center of the left ventricle
(LV). One set of long axis (LA) images are acquired along planes having an angular
separation of 20 degrees and whose intersection approximates the long axis of the
LV.

 =  +  + 
                           (a)                            (b)                              (c)                         (d)

Fig. 1. The full data set (a) is composed of two SA sets (b) and (c) and a LA set (d)

To prepare the images for segmentation, we use low level image processing methods,
detailed in [6], that (1) suppress intensity inhomogeneity induced by surface coils and
(2) suppress differences in MR intensities between subjects.
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2.2  Apply Deformable Surface Models to Segment the Myocardium

2.2.1    Description of the Deformable Models that We Use
The myocardium can be delineated by 3 surfaces the endocardial surface of the right
ventricle (RV), the endocardial surface of the left ventricle (LV), and a combined LV
and RV epicardial surface surrounding both ventricles [9]. Consequently, we fit 3
surface models to the image data to segment the myocardium. We denote these mod-
els: RVEndo, LVEndo, EPI, respectively. Each model is initialized to a very rough
approximation of the desired surface. For example, the LVEndo model is initialized
to a ellipsoid shape ( S  in Fig 2a). The model is parametric in material coordinates

( , )u v=u , where u  and v  are latitudinal and longitudinal coordinates respectively.

Each point on the surface model, ( , , )x y z  is governed by a function of{ , , }iu v a : 0a

controls the overall size of the shape, while 1a , 2a , and 3a  control the aspect ratio

parameters in the ,x y  and z  directions respectively. The shape is defined in a model

frame,φ . The surface model is roughly aligned to the image data by applying a

translation, ( )tc , and a rigid body rotation, ( )tR , to the model frame. Once the model
has been initialized, it deforms under image forces to fit to the MR data. A free form
deformation is represented by the displacement field d . The initial surface plus the
current deformation at time, t , is the surface model, denoted ( , )tp u . The relation-

ship between the deformable model p  and the surface model points, ( , )tx u in an

inertial reference frame, Φ , is given in Fig 2c. The combined epicardial surface
model (EPI) can also be roughly described by an ellipsoid, while we model the
RVEndo model using a blending of two ellipsoids as in [9].
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Fig. 2. (a) Reference shape, S . (b) Deformable model, p . (c) Model points, x , in inertial

reference frame. (d) Relationship between model frame,φ , and inertial frame, Φ .

2.2.2    Extract Image Features for Each Model
We extract image features for each model so that we can (1) initialize the pose,

( )tc and ( )tR , and aspect parameters { }0, 1, 2, 3,a a a a and (2) generate forces for the

displacement, d , of the deformable models. Fig 3b shows the result after applying a
grayscale opening with a disk-shaped structuring element to the input in Fig 3a. Fig
3c depicts the result after thresholding and pruning non-heart related regions from (b).
Fig 3d shows the result after applying a grayscale closing operation to the images in
(a) with a linear structuring element to fill in the tags. In [5] we detailed the process



510         A. Montillo, D. Metaxas, and L. Axel

for extracting features from SA images. In this paper we (1) extend the process to LA
images and (2) implement a new thermal noise suppression filter which combines
scale based diffusion [8] with median filtering to a) suppress thermal noise b) pre-
serve salient edges and c) suppress impulse noise. Fig 3e shows the magnitude of the
intensity gradient of (d). We use the regions (Fig 3c) as the features that attract the
RVEndo and LVEndo models, and edge features (Fig 3e) to attract the EPI model.

                               

            
                         a                   b                   c                     d                   e

Fig. 3. Features derived from SA images (first row) and LA images (second row).

2.2.3    Automatically Initialize the Pose and Aspect Parameters of Each Model
Region features, (Fig 3c), are used to estimate the initial pose and aspect parameters
of the surface models. For example, to initialize the pose of the principal axis of the
LVEndo, we robustly fit a line (Fig 4a) through the centroids of each LV endo region
in each SA image. The center of the ellipsoid is defined to be on this line and roughly
near the center of mass of the LV endo features.We align the y axis of the model
reference frame along the line from the ellipsoid center to the center of mass of the
RV endo features as shown in Fig 4c. The pose also defines the LVEndo model
frame. In this frame we scan the LV endo features in the SA images (Fig 3c, top) for

the extremal pixels to determine aspect parameters, { }1, 2, 3,a a a . Fig 4b depicts how we

stretch the ellipsoid by adjusting 3a  until the apex fits the LV endo feature in the

most inferior SA slice. In Fig 4c, we have scaled the ellipsoid along MX and MY
using parameters 1 2,a a . We set the overall scale, 0a , to unity. A similar approach is

used for the RVEndo model and EPI model.

      

ALI

  
                       a                             b                         c                     d                        e

Fig. 4. (a) Robust line fit through centroids of LVEndo blood regions (b) The initial LVEndo
model (c) LVEndo model frame and initial shape: top down view with a SA slice (d) RVEndo
model frame and initial shape (e) EPI model frame and initial shape.
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2.2.4 Compute 2D Image Forces to Attract Each Model to the Appropriate
Features

The 2D images are radially-arranged and parallel-arranged and sparse (Fig 1a). To fit
our 3D models to patient-specific anatomy, we derive 3D image forces through these
steps:
1) compute a 2D image force field (vector field) on each feature image
2) compute the intersection points, iu , of each image plane with model edges

3) Extrapolate image forces exerted on iu  to nodes bounding the intersected edges.

4) Combine the multiple 2D forces felt by each node into 3D forces that move it
Compute a 2D Vector Field of Image Forces from Each Feature Image: We
generate a vector field of image forces by computing the gradient of each feature
image and interpolate it via the gradient vector flow (GVF) computation [3]. Fig 5a
shows the force field (subsampled for readability) for the LVEndo model for one SA
image; the gray RV region is suppressed (set to zero) during GVF computation for the
LVEndo model. A similar process is used for the RVEndo model (Fig 5b) while the
force field (Fig 5c) for the EPI model comes from an edge image.
Compute the Image Plane/Model Edge Intersection Points, iu : We compute the

intersection points of model edges and image planes by searching edges to find those
which straddle an image plane (Fig 5d).  Which-side-of-plane tests are preformed for
each edge endpoint. We represent the image plane with the implicit equation,

( )pn x P⋅ − , where n̂  is the unit normal to the image plane, pP is a point in the plane,

and m  is the distance of the test point X from the image plane. Edge 1 2x x  is

intersected by the plane, if this equation yields opposite signs for 1x and 2x . We

substitute the line equation ( )l t , 1 2 1( ) ( )l t x t x x= + −  for X to compute the point of

intersection, iu .
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Fig. 5. (a) GVF forces that attract the LVEndo model (b) Forces that attract the RVEndo model
(c) Forces that attract the EPI model (d) a model element intersected by an image plane

Extrapolate the Forces Exerted by the Vector Fields to the Nodes: We compute
the image force acting on each intersection point, iu , by bilinearly interpolating the

GVF field. The shape of each surface model is defined by the position of the model
nodes comprising the triangular tessellation (e.g. Fig 7b). The nodes are the
intersection of 2 or more edges. To deform the model with the image forces, we
linearly interpolate the force felt by each intersection point, iu ,  to the endpoints of

the edge on which iu  lies.  If the force felt by iu  is f , the endpoint forces are

1
(1 )xf t f= −  and 

2xf tf= .
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2.2.5 Compute 3D Image Forces by Combining 2D Image Forces
Multiple image forces are typically extrapolated to each node. For example, in Fig 6a,
a short sequence of edges from a surface model is shown. The SA image plane inter-

sects the model edge ab  at the point d. There are two image forces that influence d:

the force from the horizontally tagged image, Hg  and the force Vg  from the verti-

cally tagged image. We denote as g the weighted sum of Hg  and Vg . Depending on

the orientation in space of the surface we desire to segment the images yield different
degrees of information about the location and orientation of the surface: as the angle
between a model surface and the initial horizontal tag direction (the direction laid
down in the pulse sequence) approaches 90 degrees, we increase the weight of Hg

relative to Vg and vice-versa as the angle approaches zero. The force, g , is parallel to

the XY plane. Often ab  will also be intersected by a LA image. For example, Fig 6b

shows an image that intersects ab  at the point c. The force from this image, f  has

one component, XYf , parallel to the XY plane and another, Zf , parallel to the Z

axis. If these are the only images intersecting the edge connected to the node a, then
we have the situation shown in Fig 6c in which three forces “pull” node a: two forces
from c: 'Zf and ' XYf  and one from d: 'g . Both ' XYf and 'g  are parallel to the XY

plane, hence we compute a weighted average of them, denoted h . The 3D image

force felt by a is then ( )'
, ,

TZ
a x yf h h f= . A similar process is applied for all nodes.
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Fig. 6. (a) Image forces from a SA image plane (b) Image forces from a LA image plane (c)
The forces are extrapolated to the edge endpoints.

2.2.6 Compute 3D Internal Forces Which Make Each Fitted Surface
Model Smooth

Using image forces alone, yields an unsatisfactory fit for the 3 surfaces, due to the
presence of residual MR artifacts. We improve the results dramatically by adding
internal model regularization forces. Using the regularization framework of a thin
plate under tension and the finite element method, we embed smoothing “material”
properties into each model. We model the deformation strain energy, ( )ε d , using eqn
(1). The deformation strain energy comes from the partial derivatives of the dis-
placement, d , of material points (u,v) on the model's surface in the model frame,φ :
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( )
2 2 2 2 22 2 2

2
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( ) w w w w w w d
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ε

∂ ∂ ∂ ∂ ∂
= + + + + +
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∫

d d d d d
d d u  (1)

Increasing coefficients,{ }20 11 02, ,w w w , makes the model behave more like a thin plate;

increasing { }10 01,w w increases model elasticity; increasing { }00w  increases the ten-

sion. The coefficients which work best on experimentation with 5 subjects have been
adopted for model fitting. To compute the displacement, ( , )u vd , which is every-

where C1, we let the nodal variable be dq  as in (eqn 2a). The nodal shape functions

are { }1 18,...,N N  as in [6]. Using the theory of elasticity, the deformation strain energy

at a node of the jth element, jE , can be expressed in terms of the strain matrix, jΓ ,

(eqn (2b,c)), and a diagonal matrix of material properties, jD  (eqn (2d)). Using this

formulation, the elemental stiffness matrix, 
k

j
ddK , (eqn (2e)), is derived from the de-

formation strain energy. We expand the 
k

j
ddK matrices to form the global stiffness

matrix K.
(a)  2 2 2
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(e) ( )
k

j

Tj j j j
dd k k k

E

K D du dv= Γ Γ∫

(2)

2.2.7 Deform the Models with All 3D Forces Until the Forces Equilibrate
or Vanish

The motion of our model nodes are governed by the Lagrangian equations of motion.
We set the mass matrix to zero and the dampening matrix to the identity which yields
the first order equation: K+ =q q f  where K is the stiffness matrix derived earlier,

and f and Kq  are the image and internal forces, respectively. We solve this equation

with the explicit Euler difference scheme: ( ) ( ) ( )( )t t t t K t+ ∆ = + ∆ −q q f q  and evolve

our model until the external and internal forces equilibrate or vanish.

3  Results

3.1   Qualitative Results

We compare the intersecting contour of our surface model with the LA and SA im-
ages to the contours drawn by experts. In Fig 7a contours are shown for four phases
throughout the cardiac cycle. Displaying both types of contours in the images pro-
vides convincing evidence of our algorithm’s accuracy. At the base of the RV we can
see a “flap” which curls over the right atrium. To accurately segment the atria, we
would
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Phase 2 Phase 6 Phase 9 Phase 13

  

Phase 2 Phase 6 Phase 9 Phase 13

           a      b
Fig. 7. (a) Segmented EPI surface intersection line (solid line), 2D contour drawn by the expert
(dashed line). (b) The surface contracts throughout systole (phases 2-9) and expands during
diastole (phase 9-13).

(1) model the atria and (2) acquire SA images intersecting the atria. We see additional
evidence for the correctness of our algorithm by examining the fit of our 3D model
throughout the cardiac cycle (Fig 7b).

In addition, we have preliminary results for the endocardial surfaces. Fig 8 shows
the fitted RVEndo and LVEndo models. They have fit the endocardial surfaces quite
well. The fit of the apex of the LV particularly benefits from the LA images.

      
                    a                               b                                c                                  d

Fig. 8. Endocardial surfaces:(a)axial (b)coronal views; with EPI superimposed:(c) and (d).
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Fig. 9.  A. EPI distance errors for 5 subjects  b. distance errors for all surfaces for one subject.

3.2    Quantitative Results

We compute the distance between each segmented contour, A (the intersection be-
tween our 3D models and the image plane) and the corresponding 2D contour, B,
drawn by the expert, by computing the distance ( , ) min

b B
d a B a b

∈
= −  for all points a
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on the segmented contour and ( , )d b A  for points, b on the expert contours. Fig 9a

shows the cumulative distribution of these error distances for the contour points over
all slices in all volumes from end diastole to end systole and into the next diastole for
5 normal and diseased subjects comprising over 1500 images. The plot shows that
50% of the segmented epicardium contour points are within 2.1mm (a pixel is 1mm x
1mm) and that 90% of the points are within 6.3 pixels. Fig 9b shows the quantitative
results for the endocardium models for one subject. For the LVEndo, 50% of the
points are within 1.5mm, 90% are within 3.3mm. The RV endocardial surface: 50%
of its points are within 2.3mm, 90% are within 5.3mm. The RV errors that occur are
concentrated near (1) the narrow apex which is often not visible in both the LA and
the SA images and (2) at the bifurcation of the RV into inflow and outflow tracts,
which we are not currently modeling.

4   Conclusions

We have presented an automated model-based segmentation method for extracting
surfaces delineating the myocardium in tagged MRI. To achieve excellent segmenta-
tion we have developed novel methods to (1) initialize the models and (2) to compute
3D model forces from 2D images. Our method is fully automated and its running time
is less than 15% of the time required for manual expert segmentation.
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