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Abstract. A fully-automated 3D image analysis method is proposed to
segment lung nodules in HRCT. A specific gray-level mathematical mor-
phology operator, the SMDC-connection cost, acting in the 3D space of
the thorax volume is defined in order to discriminate lung nodules from
other dense (vascular) structures. Applied to clinical data concerning pa-
tients with pulmonary carcinoma, the proposed method detects isolated,
juxtavascular and peripheral nodules with sizes ranging from 2 to 20 mm
diameter. The segmentation accuracy was objectively evaluated on real
and simulated nodules. The method showed a sensitivity and a specificity
ranging from 85% to 97% and from 90% to 98%, respectively.

1 Introduction

With the highest mortality rate among all malignant diseases, lung cancer gained
a central place in the therapeutic research. As efficient therapies depend on the
capability to diagnose the disease at its earliest stage, a lot of effort was invested
in developping reliable procedures for lung nodule detection in an automatic
screening framework. In this respect, the major difficulties to overcome are re-
lated to the nodule variability in terms of morphology, size and connectivity to
other anatomical structures. Lung nodules appear as dense masses of various
shapes, with sizes ranging from few millimeters to several centimeters, showing
non-uniform textures and good contrast with respect to lung parenchyma. De-
pending on their spatial location, lung nodules are divided into three classes: (1)
isolated, they do not have any connection with other dense anatomical struc-
tures, (2) juxtavascular, they “touch” a blood vessel, and (3) peripheral, they
are connected to the pleura or to the mediastinum.

Replacing conventional chest radiography [1] for a more accurate lung
screening, (HR)CT involved several approaches for nodule detection such as:
rule/knowledge-based [2,3], fuzzy clustering [4], k-means [5], dynamic program-
ming [6], neural networks [7], template matching [8,9] or mathematical morphol-
ogy [10]. Unfortunately, the objective of a reliable automatic screening was still
not reached, most of these techniques either presenting difficulties of efficient dis-
crimination between nodules and other dense (vascular) structures (especially in
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a slice-by-slice detection framework), or being dedicated to a specific class of
nodules.

In the context of automatic lung screening in volumetric CT, this paper
proposes an original 3D approach providing automatic segmentation of nodules
irrespective to their spatial location, with sizes ranging from 2 to 20 mm diam-
eter. The developped approach relies on a specific morphological operator, the
selective marking and depth constrained (SMDC-) connection cost. It features
specific properties in terms of both selectivity, which ensures size-independent
nodule detection, and topographical connectivity preservation, which makes pos-
sible to discriminate the nodules from other dense structures and to differentiate
the three classes of nodules. Section 2 presents the mathematical concepts in-
volved in the proposed approach and the basic principle of the nodule detection
scheme. The 3D segmentation algorithm is described and illustrated in Section
3. Section 4 presents the segmentation results obtained on clinical pathological
data and a discussion on the overall performance of the method.

2 Mathematical Concepts

2.1 Connection Cost and SMDC-Connection Cost

The (SMDC-)connection cost operators are defined for functions f : X ⊂ �n →
� of connected support supp(f) = X and upper bounded, on any bounded
subset of supp(f). For a complete mathematical definition of both operators,
the reader may report to [11,12]. Intuitively, if the function f is interpreted as
a topographical relief, the connection cost Cf (x, Y ) of f with respect to a non-
empty subset Y ⊂ supp(f) is built up as follows: first, the relief f is collapsed at
Y locations in infinite depth valleys, then, the resulting relief is flooded by “rain”
until an equilibrium is reached, Fig. 1(a). By convention, ∀x ∈ Y, Cf (x, Y ) =
−∞.

We say that a point x ∈ supp(f) is topographically connected to a subset
Y ⊂ supp(f), if there is a descending path on the relief f leading from x to Y .
With this definition, Cf (., Y ) has the property to “fill in” all local valleys of f
which are not topographically connected to Y .

The SMDC-connection cost, RCg
f (., Y ), is derived from Cf (., Y ) by introduc-

ing an additional constraint: the maximum level of the flooding over the relief
RCg

f is imposed by a function g : supp(f) → �, g(x) ≥ f(x), as shown in
Fig. 1(b). Here, g can be interpreted as a hot surface leading to instant water
vaporisation when getting in contact with it. Moreover, RCg

f (., Y ) is defined so
as to preserve the f value at all points x in Y , i.e., ∀ x ∈ Y , RCg

f (x, Y ) = f(x).
Depending on the definition of g, RCg

f (., Y ) features a selectivity of “filling
in” the local valleys non-topographically connected to Y . For example, in order
to select only the local valleys up to a given size n, a possible choice of g is [12]:

g = gn = min(f ⊕ Bn, f ⊕ B̌n), (1)
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where Bn denotes an upstream neighborhood of size n, B̌n the symmetric set
of Bn with respect to the origin, and ⊕ the morphological dilation. In this case,
RCg

f is denoted by RCn
f . The following properties hold:
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(b) SMDC-connection cost RCg
f (., Y ).

Fig. 1. Comparison between connection cost and SMDC-connection cost.

1. ∀n, N ∈ �, n < N, h = RCn
f (., Y ) ⇒ RCN

f (., Y ) = RCN
h (., Y ),

2. RC0
f (., Y ) = f,

3. ∀x ∈ supp(f) \ Y, RC∞
f (x, Y ) = Cf (x, Y ).

(2)

2.2 RCn
f -Based Segmentation Scheme

The RCn
f (., Y ) properties make possible to implement a segmentation scheme in

order to extract the local valleys from a relief f , which are non-topographically
connected to a reference set Y ⊂ supp(f), have a size comprised in a defined
interval [m, M ] and a local depth greater than a given threshold β. The seg-
mentation scheme performs successively:

1. “Filling in” of local valleys of sizes up to m, Uf,Y = RCm
f (., Y );

2. “Filling in” of local valleys of sizes up to M , Vf,Y = RCM
f (., Y );

3. Hysteresis thresholding, Wf,Y = HT β
α (Vf,Y − Uf,Y ), α ≤ β. HT β

α (f) is
defined as follows. Let A = {x ∈ supp(f)/f(x) ≥ α} and B = {y ∈ supp(f)/
f(y) ≥ β}. HT β

α (f) = {x ∈ A/δA∪B(x, B) < +∞}, where δX(., .) denotes the
geodesic distance with respect to the X set [11].

(a) f . (b) RCm
f (., Y ). (c) RCM

f (., Y ). (d) Wf,Y .

Fig. 2. Principle of the RCn
f -based segmentation scheme illustrated on a gray-level

synthesized relief. The central valley in the image represents the segmentation target.
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Fig. 2(a) illustrates a synthetic relief f including valleys of different sizes:
up to p for the smallest ones, P > p for the central one, and Q > P for the
largest two valleys. In order to segment the central valley, the previous scheme
is applied with the following parameters: m = p, M = P , α = 1, β = h, the
valley depth, and Y = ϕ, the relief border, Figs. 2(b)-2(d).

Note that the RCn
f (., Y ) operator does not affect neither the valleys of sizes

larger than n, nor the valleys topographically connected either with the larger
valleys or with Y . The RCn

f -based segmentation scheme is the key issue of the
3D algorithm developped for lung nodule detection, presented in the following
section.

3 Lung Nodule 3D Segmentation Algorithm

Gray level thorax volume acquisitions were performed in clinical routine with the
GE LightSpeed scanner, by using the following protocol: 1.25 mm collimation,
0.6 mm reconstruction interval for axial images and lung windowing (-1000 HU
÷ 200 HU).

In order to illustrate the principle of the 3D segmentation algorithm devel-
oped, we have synthesized a gray-level relief, Io, which perfectly simulates a
native 3D CT thorax volume in terms of tissue densities and spatial location
of anatomical structures, Fig. 3(a). This picture shows both lungs (noisy, low
gray-level texture, with values ranging from 0 to 100), the vascular structure con-
nected to the mediastinum, which, at its turn, is connected to the thorax cage
(high gray levels, between 100 and 255). We can further count nine isolated,
three juxtavascular and seven peripheral nodules.

Note that the thorax volume is first cropped to limit the processing to only
the bounding box of the lungs, which are automatically detected. Consequently,
the thorax cage is connected to the border of the thorax relief, as shown in
Fig. 3(a). Each class of nodules is segmented by means of a preliminary filtering
which sets up the topographical connectivity properties of the relief, followed by
the §2.2 scheme. The algorithm is given below, where �, ⊕, ◦ and • denote the
gray-level morphological erosion, dilation, opening and closing, respectively.

A. Segmentation of Isolated Nodules

1. Invert Io: Ion = 255− Io, Fig. 3(b). Isolated nodules appear as local “valleys”
in the Ion relief.

2. Filter Ion: propagate the relief border onto low gray-level regions by using
a spherical structuring element (SE) Sn, of radius n = 2. A point x ∈ supp(Ion)
is added to the grown region if ∀y ∈ Sn(x), Ion(y) ≤ 150. The small size of n is
chosen so that Sn can penetrate inside the main vascular structure. Note that the
growth threshold of 150 is derived from a priori knowledge on thoracic CT gray
levels. The gray-level value of the grown region is set to zero. A morphological
opening with a SE S1 provides the filtered relief If , Fig. 3(c). This operation
ensures a good topographical connectivity between vascular regions and the relief
border, further denoted by ϕ.
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3. Apply the §2.2 segmentation scheme on If , with the following parameters:
m = 2 (noise suppression in the parenchyma), M = ∞ (size-independent nodule
selection), Y = ϕ, α = 1, β = 20 (the required minimum contrast between
the nodule and its environment). Fig. 3(d) shows the extracted set of isolated
nodules, Iisol = WIf ,ϕ and Fig. 3(e) the resulting VIf ,ϕ relief, denoted by Ici. The
local “valleys” corresponding to isolated nodules are “filled in”. Juxtavascular
and peripheral nodules are not affected since they are topographically connected
to the border.

B. Segmentation of Juxtavascular Nodules

The same principle as before is applied, starting from Ici, after the juxtavascu-
lar nodules are topographically disconnected from the blood vessels by means
of a morphological dilation with the SE S1, Fig. 3(f): Id = Ici ⊕ S1. Note that
such disconnection may not be complete, but it ensures a higher gray-level in-
terface between the vessel and the nodule. The step A.3 is then applied to Id for
segmenting the juxtavascular nodules, Icx, (Figs. 3(g), 3(h)).

C. Segmentation of Peripheral Nodules

In order to use the same approach as above, peripheral nodules have to be
isolated from the adjacent high gray-level structures. In this respect, a lung
mask is computed so as to include the desired nodules and to exclude the thorax
cage and the mediastinum. The following operations are performed.

1. Extraction of a pulmonary mask “covering up” the lung contour irregu-
larities corresponding to peripheral nodules: Ipf = (Bin255

200Icx) • S10, Fig. 3(i),
where Binb

a denotes the binarization operator between the thresholds a and b.
2. Original relief selection by using Ipf : Ir = Io & Ipf , Fig. 3(j).
3. Ir inversion: Irn = 255 − Ir, Fig. 3(k). Irn is further filtered in order

to eliminate low gray-level lung contour regions (closing) and preserve the topo-
graphical connectivity inside the vascular structure (opening): Ip = (Irn•S1)◦S1,
Fig. 3(l). Peripheral nodules are now local valleys within the Ip relief. As the
regions connected to the border have high gray-levels, there is no longer possible
to select the desired valleys by means of §2.2 scheme computed with respect to
the border (vascular structure would also be segmented). We have to define an
appropriate reference subset Y .

4. Definition of a reference subset: Yp = (Ipf � S20) + (Itb ⊕ S2), Fig. 3(m),
where Itb is the subset of trachea and main bronchi, automatically segmented by
using 3D region growing. Fig. 3(n) shows the Yp set (dark gray) superimposed
on the Ip relief. Note that WIp,Yp with respect to Yp will not affect the regions
topographically connected to Yp.

5. Final segmentation by applying the §2.2 scheme on Ip, with the following
parameters: m = 2, M = ∞, Y = Yp, α = 20, β = 40. Fig. 3(o) shows the
extracted set of peripheral nodules, Iper = WIp,Yp .
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(a) Synthesized relief, Io. (b) Ion = 255 − Io. (c) If .

(d) Iisol = WIf ,ϕ. (e) Ici = VIf ,ϕ. (f) Id = Ici ⊕ S1.

(g) Ijv = WId,ϕ. (h) Icx = VId,ϕ. (i) Ipf = (Bin255
200Icx)•S10.

(j) Ir = Ipf&Io. (k) Irn = 255 − Ir. (l) Ip = (Irn • S1) ◦ S1.

(m) Yp reference set. (n) Yp (dark gray) and Ip. (o) Iper = WIp,Yp .

Fig. 3. Principle of the 3D segmentation algorithm of lung nodules, illustrated on a
gray-level synthesized relief. The following notations were used: & - “logical and”, ⊕ -
dilation, � - erosion, • - closing, ◦ - opening, Sn - spherical structuring element of size
n, and Binb

a - binarization between the thresholds a and b.



632 C.I. Fetita et al.

(a) Metastasis of adenocar-
cinoma.

(b) Metastasis of squamous
cell carcinoma.

(c) Undifferentiated na-
sopharyngeal carcinoma.

(d) Pulmonary adenocarci-
noma.

Fig. 4. Some results of 3D segmented lung nodules (light gray: isolated, medium gray:
juxtavascular, dark gray: peripheral).

Note that higher values for α and β are required here to prevent a large number
of segmentation artifacts. In our example, such artifacts are visible in the regions
where the lungs are close to each other (Fig. 3(o), arrows). They generally have
an elongated shape in the 3D space and can be eliminated by using a 3D shape
criterion which estimates the nodule occupancy ratio within its circumscribing
sphere.

The 3D segmentation of lung nodules is completed by a global artifact reduc-
tion based on the above-mentioned 3D shape criterion (affecting the elongated
structures), followed by a 3D contour regularization.

4 Results and Discussion

Our database consisted of 10 volumetric spiral CT acquisitions of patients pre-
senting lung carcinoma with different degrees of severity (about 300 nodules).
Fig. 4 illustrates some examples of 3D segmented nodules (2-20 mm diameter)
imaged by using composite (surface-volume) rendering.

The isolated nodules were accurately segmented in all cases, irrespective to
their size, but small size juxtavascular nodules may not be detected if a lower
density interface with the vessels is absent. Note that large and flattened periph-
eral nodules may be missed, as the filtered pulmonary mask Ipf may not select
them. In addition, some irregularities of lung parenchyma may be misled for
peripheral nodules. These two effects are inversely correlated and influenced by
the size of the structuring element Sn used for Ipf extraction, cf. §3(C.1). Note
also that large peripheral nodules (over 20 mm diameter, considering the usual
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image resolution of 0.5 mm/pixel) will be connected to the reference set Yp and
will not be detected by the algorithm. However, within the mentioned caliber
interval, the proposed approach is nodule size-independent, fully-automatic and
addresses all types of nodules, which makes it suitable for lung screening in a
clinical framework.

The segmentation accuracy was evaluated by two experienced radiologists
(comparison with native images) and by means of mathematically-simulated
lung nodules inserted in a healthy thorax image volume. The synthetic nod-
ules presented round shapes and uniformly distributed gray levels in the [200,
255] interval. We found a 98% sensitivity and a 97% specificity for isolated and
juxtavascular nodule detection, and a 90% sensitivity and a 85% specificity for
peripheral nodule detection.

Note that, in terms of computation speed, the algorithm runtime is of about
3 minutes on a Pentium4 PC, for each class of nodules, and for a thorax volume
consisting of 300 axial images.

5 Conclusion

In this paper, we have presented a fully-automated method for 3D segmentation
of lung nodules from thorax volumes acquired in spiral CT. The originality of
the approach consists in exploiting a specific morphological operator, applied
in a segmentation scheme which confers accuracy and robustness in detecting
isolated, juxtavascular and peripheral nodules with sizes ranging between 2 and
20 mm diameter. An implementation on clinical site is under study for a large
validation within a lung screening framework. Further research will address a
realistic nodule modeling in order to simulate tumor growth processes and, in
this context, to check up the accuracy of the proposed segmentation approach
for diagnosis and follow-up.
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