Abstract
We propose a non-rigid registration algorithm for temporal subtraction of thorax CR-images. The images are deformed using a statistically trained B-spline deformation mesh based on principal component analysis of a training set. Optimization proceeds along the transformation components rather then along the individual spline coefficients, using pattern intensity as the criterion. The algorithm is trained on a set of 30 lung pairs and verified on a set of 46 lung pairs. In 96% of the cases the achieved registration is subjectively rated to be adequate for clinical use.
Chapter PDF
Similar content being viewed by others
Keywords
- Registration Criterion
- Temporal Subtraction
- Principal Component Analysis Mode
- Misregistration Error
- Lung Pair
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Weese, J., Buzug, T.M., Lorenz, C., Fassnacht, C.: An approach to 2D/3D registration of a vertebra in 2D X-ray fluoroscopies with 3D CT images. In: Proc. CVRMed/MRCAS, pp. 119–128 (1997)
de Boor, C.: A Practical Guide to Splines. Springer, New York (1978)
Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P.: Non-rigid image registration using a statistical spline deformation model. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 463–474. Springer, Heidelberg (2003)
van Ginneken, B., Frangi, A., Staal, J., ter Haar Romeny, B., Viergever, M.: Automatic detection of abnormalities in chest radiographs using local texture analysis. PhD thesis, Universiteit Utrecht (2001)
Ingber, L.: Very fast simulated annealing. Mathematical and Computer Modelling 12, 967–973 (1989)
Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part I—theory. IEEE Trans. Signal Processing 41, 821–832 (1993)
Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part II—efficient design and applications. IEEE Trans. Signal Processing 41, 834–848 (1993)
Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal Processing Mag. 16, 22–38 (1999)
MATLAB. Version 6.5.0.180913a (R13) (2002)
Ishida, T., Katsuragawa, S., Nakamura, K., MacMahon, H., Doi, K.: Iterative image warping technique for temporal subtraction of sequential chest radiographs to detect interval change. Medical Physics 26, 1320–1329 (1999)
Kano, A., Doi, K., MacMahon, H., Hassell, D.D., Giger, M.: Digital image subtraction of temporally sequential chest images for detection of interval change. Medical Physics 21, 453–461 (1994)
Nastar, C., Moghaddam, B., Pentland, A.: Generalized image matching: Statistical learning of physically-based deformations. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065. Springer, Heidelberg (1996)
Rueckert, D., Frangi, A., Schnabel, J.: Automatic construction of 3D statistical deformation models using non-rigid registration. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 77–84. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Loeckx, D., Maes, F., Vandermeulen, D., Suetens, P. (2003). Temporal Subtraction of Thorax CR Images. In: Ellis, R.E., Peters, T.M. (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. MICCAI 2003. Lecture Notes in Computer Science, vol 2878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39899-8_90
Download citation
DOI: https://doi.org/10.1007/978-3-540-39899-8_90
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20462-6
Online ISBN: 978-3-540-39899-8
eBook Packages: Springer Book Archive