
Temporal Subtraction of Thorax CR Images

Dirk Loeckx, Frederik Maes�, Dirk Vandermeulen, and Paul Suetens

Medical Image Computing (Radiology–ESAT/PSI), Faculties of Medicine and
Engineering, University Hospital Gasthuisberg, Herestraat 49, B-3000 Leuven,

Belgium. Dirk.Loeckx@uz.kuleuven.ac.be

Abstract. We propose a non-rigid registration algorithm for temporal
subtraction of thorax CR-images. The images are deformed using a sta-
tistically trained B-spline deformation mesh based on principal compo-
nent analysis of a training set. Optimization proceeds along the transfor-
mation components rather then along the individual spline coefficients,
using pattern intensity as the criterion. The algorithm is trained on a
set of 30 lung pairs and verified on a set of 46 lung pairs. In 96% of the
cases the achieved registration is subjectively rated to be adequate for
clinical use.

1 Introduction

Radiologists commonly compare a current chest radiograph with a previous one
in order to facilitate the detection of new abnormalities. These abnormalities
can be caused for instance by pulmonary nodules, interstitial infiltrates, pleural
effusions or cardiomegaly. Because of the limited quality of the exposure and
the subtlety of the interval changes, abnormalities are often difficult to detect,
especially if they overlap with anatomical structures such as ribs, vessels, heart
or diaphragm.

Temporal subtraction is a technique in which a previous recording of the
same patient is subtracted from the current recording, after proper alignment
and warping. With temporal subtraction, the visibility of interval changes in-
creases significantly. In the ideal case, all structures that didn’t change over time
disappear in the difference image. This includes not only the ribs but also the
other structures present in the lungs. Besides, abnormalities unchanged since the
previous recording largely disappear, whereas a change in size becomes clearly
visible. Thus, temporal subtraction emphasizes the differences between the pre-
vious and the current recording, caused by new or changed abnormalities.

The major challenge to create a good subtraction image is a correct regis-
tration of both images. The registration has to compensate for a difference in
pose, recording setup and inhalation. This registration is complicated because
the 2D warp of the X-ray images has to compensate for the 3D transformation
of the thorax and lungs. Since the 2D X-rays are projections of the real-world
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3D structure there is no single solution that maps all corresponding structures
on each other.

Within this article, we propose a new warping scheme. The goal of the warp
is to reduce misalignment artifacts in the difference image of the X-ray images.
To minimize those artifacts, a non-rigid registration is performed with pattern
intensity [1] as image-based similarity measure. We assume that only a small part
of the image will have changed fundamentally and thus that the abnormalities
have only a minor influence on the criterion.

The possible causes for the transformation mentioned above constrain the
registration space. Thus, the warps between different image pairs are strongly
correlated. To incorporate this knowledge in the registration algorithm, the
search space is limited to the most common modes of transformation as ob-
tained from a statistical analysis of a training set of registered image pairs.

Registration quality is judged by a human observer, rating the presence of
residual rib-related artifacts in the subtraction images.

2 Methods

The registration and warping of one radiograph to another necessitates three
important parts: a way to model the transformation, a registration criterion to
judge the goodness of fit and an optimization strategy.

2.1 Spline Deformation Model

Because of their limited support, scalability and multiresolution properties, a
2D tensor product B-spline was chosen to model the transformation [2]. Our
experiments with manual registration of temporal pairs of chest radiographs
indicate that a 2D tensor product B-spline of the third order with 6 × 6 knots
(2 knots of multiplicity 3 in each dimension) and thus 3 × 3 control points
allows sufficient degrees of freedom to achieve an adequate registration of the
ribs. The spline control point configuration is illustrated in Fig. 1. As different
control points for the horizontal and vertical transformation field are needed, 18
parameters are used.

To further reduce the search space and improve the specifications of the opti-
mization a statistical analysis, principal component analysis (PCA), is performed
on a manually registered training set [3]. This way we can reduce the number of
degrees of freedom by only retaining the most significant modes of variation as
observed in the training set. Affine translation and scale modes are merged with
the PCA modes into a unified approach. The mean and standard deviation of
all modes of variation are also obtained.

2.2 Registration Criterion

Some anatomical features outside the lung fields, such as the clavicle, medi-
astinum or parts of the limbs, transform independently of the lung field, and
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their presence in the image may interfere with finding a proper registration for
the lung field itself. Hence, the lung field is segmented prior to registration and
non-lung regions are excluded when computing the registration criterion. This
improves registration robustness and at the same time increases the calculation
speed. Lung field segmentation is achieved using a variation of the Active Shape
Model segmentation algorithm with optimal image features [4]. This results in
a region of interest (ROI) containing both lung fields, including the lateral lung
boundaries and excluding the mediastinum. Two example images with overlaid
ROI’s can be seen in Fig. 1. The ROI of the first image, which is warped towards
the second image, undergoes the same transformation as the first image and is
overlaid on the ROI of the second image. The registration criterion is computed
over all pixels in the union of both ROI’s.

(a) (b)

Fig. 1. Pair of digital thorax radiographs to be registered, with 3x3 spline control point
mesh overlaid and automatically segmented lung field ROI’s.

Different registration criteria were tested, but pattern intensity [1]

Pr,σ (Idiff) =
∑

x,y

∑

r≤rmax

(Idiff (x, y) − Idiff (v, w))2

σ2 + (Idiff (x, y) − Idiff (v, w))2
(1)

with Idiff the difference image, radius r =
√

(x − u)2 + (y − v)2 and threshold σ,
was found to be best behaved around the registration solution. PI measures the
remaining artifacts in the difference image. The radius rmax selects the scale of
the artifacts, while the threshold σ serves to equalize their contribution. Roughly
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spoken, artifacts smaller than r are considered as noise, while artifacts with an
intensity difference larger than σ will have the same contribution to the penalty.
We have used rmax = 3.5 pixels and σ = 128, but these values were not critical.

2.3 Optimization

Because of the nature of the lung images, the cost function is not smooth and has
multiple optima. As standard optimization algorithms are found unreliable for
our problem, a multi resolution fast simulated annealing [5] optimization strat-
egy is chosen. The transformation is parameterized by the modes of variation
as obtained from the principal component analysis rather then over the spline
control points directly. Also the boundaries of the optimization parameters are
expressed in units of standard deviation. An example of the course of the cost
function around the optimum can be seen in Fig. 2.
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Fig. 2. Dependence of cost-function around the optimum on (left) translations (XY)
and (right) the first two PCA modes.

Initially, the centers of mass of both ROI’s are horizontally aligned and the
lung tops vertically. Registration then occurs in two steps. In the first step, we
perform an affine registration using only the translation and scale modes. In the
second step, we allow t degrees of freedom, where t can be any number between
3 to 18, i.e. t varies from affine to full spline registration. For the first step the
original images are resized to 64 × 64 pixels, the second step is performed on
images of 128 × 128 pixels.

The transformation is passed on from one resolution to another by scaling the
transformation mesh rather than the transformed image. Images are resampled
and morphed using B-spline interpolation [6, 7, 8]. B-spline interpolation yields
a very good sub-pixel precision, allowing for the small image processing sizes.

2.4 Implementation

Development and implementation of the algorithm was performed in Matlab,
focusing rather on the quality of registration than on the performance. The
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registration software is implemented and ran on a Dell Precision 530 workstation
with dual Xeon 2.2 Ghz/512k processors in Matlab 6.5 release 13 for Linux [9],
while the most time-critical procedures are coded in C++.

2.5 Validation

As is often the case with real data sets, a gold standard is not available for the
validation of the registration. Most frequently, validation is still performed by a
human observer valuing each registration. Therefore, the registered image pairs
were evaluated using a five-point rating scale. This scale is identical to the scale
used by Ishida et al [10], as shown in table 1.

Table 1. Five-point rating scale [10].

1. Very Poor Most ribs are not registered and appear in
the entire intercostal space;

2. Poor Most ribs are not well registered and appear
in half of the intercostal space

3. Adequate Most ribs are well registered, with some mi-
nor misregistration error

4. Good Most ribs are almost completely registered
with some very minor misregistrations

5. Excellent All ribs are perfectly registered

The subtraction images scored as 1 or 2 need further improvement before
they can be used in clinical practice. The images scored as 3 or better are good
subtraction images and adequate for clinical use. An example of each set can be
seen in Fig. 3.

(a) (b) (c) (d)

Fig. 3. Typical examples of (a) very poor, (b) adequate, (c) good and (d) excellent
registrations. See Table 1 for a description of the rating scale.



Temporal Subtraction of Thorax CR Images 743

3 Results

The algorithm described above was applied to the temporal registration of tho-
rax CR (computed radiography) images. The images are extracted from the
PACS (Picture Archiving and Communication System) of the University Hos-
pital Gasthuisberg of the Katholieke Universiteit Leuven in Leuven, Belgium.
They were recorded for different clinical studies on different X-ray imaging sys-
tems using normal recording settings. The resolution and gray level range of
the CR images are about 2500×2500 pixels and 12 bits respectively. No special
precautions were taken to ensure the pictures were recorded under the same
recording settings. This corresponds to the clinical practice where radiologists
compare a current picture with any similar recording of the same patient without
constraints on its origin.

The algorithm is developed and trained on a set of 30 image pairs, and
validated on a set of 46 other image pairs. Not all image pairs are disjoint. In
the training set, if more than two radiographs of the same person are available, all
possible pairs are used (i.e. three radiographs lead to three pairs, four radiographs
lead to six pairs). In the validation set, if more than two radiographs of the same
person are available, one image is randomly chosen and paired with every other
image of this person. The training set is used to train the active shape model
segmentation with optimal features and to train the statistical spline deformation
models. During the registration, t = 12 degrees of freedom were used.

Registration times are relatively high with an average duration of about 150
seconds per pair. The segmentation is performed separately and takes about 90
seconds per image.

The obtained subtraction images were rated by the author on a normal com-
puter screen. In order to use as much of the available range of the display system
as possible, the histogram of the difference image in the ROI is extended over
the available gray value scale. Points outside the ROI are mapped in the same
way, values outside the ROI interval become white or black. Also, although it is
only optimized over the rectangle defined by the spline knots, the transformation
is expanded to the edges of the image. As this is an extrapolation it is only a
rough estimation, but, to our opinion, it’s favorable over an abrupt change in
the image at the edge of the spline area.

The number of cases in each rating category is shown in table 2. Less then
5% of the registered pairs is inadequate for clinical use. Most of the registrations
are rated ’good’

Table 2. Number of cases in each subjective rating category.

1 2 3 4 5
Very Poor Poor Adequate Good Excellent

# of images 1 1 12 30 2
% of total 2% 2% 26% 65% 5%
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4 Discussion

For the lung segmentation, the use of active shape models with optimal features
is favorable over standard active shape models because not all landmarks are
positioned on a clear edge in the image. As we only need a rough indication of
the lung field, the precision of the segmentation algorithm is largely sufficient
for the current application. Yet in about 10% of the cases, the lower part of the
lung is missed due to breast artifacts. The number of failures can be reduced
using a larger training set.

For the registration, the number of misregistration errors occurring is de-
pendent on the amount of time spent in the simulated annealing optimization
step. Simulated annealing is, due to its random approach, not a very efficient
optimization method, but given sufficient time, it will converge to the global
optimum. A final optimization step consisting of a downhill simplex algorithm
over the spline coefficients was also tested, but the added precision it yields is
negligible.

Previous work on temporal subtraction of lung fields has been performed by
Kano et al [11]. After initial registration of the images, they calculate regional
shift vectors and fit a two-dimensional polynomial through them. This scheme
was later improved by Ishida et al [10]. Starting from images obtained on a
Fuji-CR system, they get a good overall performance, but some misregistration
errors still occur. Subtraction is also used in other fields like digital subtrac-
tion angiography (DSA), other angiographies, breast cancer detection, multiple
sclerosis detection in brain MRI images, etc.

Comparing our results with the results obtained by Ishida et all we notice
that the performance of both algorithms is about the same. Because they allow
more degrees of freedom, the algorithm of Ishida will be more precise for small
details. But this also means that local artifacts that do not move together with
the ribs, like the clavicle or the mediastinum, will lead to local misregistrations.
Due to the spline model and the learned transformations, our algorithm looks
at a more global scale and thus will be less precise for small details but also les
prone to local inaccuracies.

The incorporation of statistical information in the transformation reduces
the number of modes for the transformation without constraining any physical
mode. In our case we were able to reduced the number of modes from 18 to
12 modes, a reduction of 33%. This method can be extended to more localized
transformations or to a higher accuracy by increasing the number of knots of the
transformation spline, although the number of training images should increase
accordingly.

Performing a statistical analysis of a deformation field was previously intro-
duced by Nastar et al [12] and Rueckert et al [13]. The former incorporated the
dimensional reduction provided by a principal component analysis (PCA) in the
Lagrangian equilibrium equation applied to face matching. The latter worked
out the concept of statistical deformation models (SDM) to construct an atlas
of the brain, containing information about the average anatomy as well as its
variability across a population of subjects.
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New to our approach is the application of PCA-guided registration directly
to the spline coefficients and to medical images. Here PCA is not only useful
to increase the speed, but also an important surplus to get an appropriate reg-
istration. Also new is the unification of the affine and PCA components of the
transformation into a single framework. This approach leads to a reduction in
the needed number of degrees of freedom [3].

To improve the robustness of the optimization, two options are open, ei-
ther enhancing the optimization method or developing a better criterion, i.e.
smoother and with less local optima. Our experience show that further reducing
the number of degrees of freedom is not a good option. Because of the limited
extend of the optimum, the correspondence between the static image and the
warped image should be sufficient before the criterion is trapped in it. E.g., if
the breathing transformation isn’t right, there will be no good optimum for the
translation. Further improvement of the accuracy could be achieved by adding
a final registration step with a refined B-spline mesh.
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