Skip to main content

Extraction of Structural Patterns in Popular Melodies

  • Conference paper
Computer Music Modeling and Retrieval (CMMR 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2771))

Included in the following conference series:

Abstract

A method is presented to extract musical features from melodic material. Various viewpoints are defined to focus on complementary aspects of the material. To model the melodic context, two measures of entropy are employed: A set of trained probabilistic models capture local structures via the information-theoretic notion of unpredictability, and an alternative entropy-measure based on adaptive coding is developed to reflect phrasing or motifs. A collection of popular music, in the form of MIDI-files, is analysed using the entropy-measures and techniques from pattern-recognition. To visualise the topology of the ‘tune-space’, a self-organising map is trained with the extracted feature-parameters, leading to the Tune Map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alhoniemi, E., Himberg, J., Kiviluoto, K., Parviainen, J., Vesanto, J.: SOM Toolbox Version 1.0. Laboratory of Information and Computer Science, Helsinki University of Technology (1997) Internet WWWpage at, http://www.cis.hut.fi/

  2. Aucouturier, J.-J., Pachet, F.: Music Similarity Measures: What’s the Use? In: Proc. of the Third International Conf. on Music Information Retrieval (ISMIR-2002), pp. 157–163 (2002)

    Google Scholar 

  3. Bell, T.C., Cleary, J.G., Witten, I.H.: Text Compression. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  4. Conklin, D., Cleary, J.G.: Modelling and generating music using multiple viewpoints. In: Proc. of the First Workshop on AI and Music (AAAI 1988), pp. 125–137 (1988)

    Google Scholar 

  5. Conklin, D., Witten, I.H.: Multiple viewpoint systems for music prediction. Journal of New Music Research 24(1), 51–73 (1995)

    Article  Google Scholar 

  6. Downie, J.S.: Music Information Retrieval. In: Cronin, B. (ed.) Annual Review of Information Science and Technology, ch. 7, vol. 37, pp. 295–340. Information Today (2003)

    Google Scholar 

  7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, New York (2000)

    Google Scholar 

  8. Foote, J.: An overview of audio information retrieval. Multimedia Systems 7(1), 2–10 (1999)

    Article  Google Scholar 

  9. Handel, S.: Listening: an introduction to the perception of auditory events. The MIT Press, Cambridge (1989)

    Google Scholar 

  10. Hewlett, W.B., Selfridge-Field, E. (eds.): Melodic Similarity - Concepts, Procedures and Applications. Computing in Musicology, vol. 11. MIT Press, Cambridge (1998)

    Google Scholar 

  11. Howell, P., West, R., Cross, I. (eds.): Representing Musical Structure. Cognitive Science Series. Academic Press, London (1991)

    Google Scholar 

  12. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)

    Google Scholar 

  13. Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Berlin (1997)

    MATH  Google Scholar 

  14. Krumhansl, C.L.: Cognitive Foundations of Musical Pitch. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  15. Lemström, K.: String Matching Techniques for Music Retrieval, PhD Thesis, Dept. of Computer Science, Report A-2000-04, University of Helsinki (2000)

    Google Scholar 

  16. Madsen, L.B., Grøn, J., Krøgholt, D. (eds.): Folkehøjskolens Sangbog, 17th edn., Foreningen for folkehøjskolers forlag, Gylling, Denmark (1997)

    Google Scholar 

  17. MPEG Information Technology - Multimedia Content Description Interface - Part 4: Audio (ISO/IEC CD 15938-4, part of MPEG-7), ISO/IEC JTC 1/SC 29/WG 11 (2001)

    Google Scholar 

  18. MPEG Requirements Group MPEG-7 Context and Objectives (ISO/IEC JTC1/SC29/WG11, N2460), International Organisation for Standardisation (1998)

    Google Scholar 

  19. Pachet, F., Cazaly, D.: A Taxonomy of Musical Genres. In: Proc. of Content-Based Multimedia Information Access Conference (RIAO), Paris (2000)

    Google Scholar 

  20. Ponsford, D., Wiggins, G., Mellish, C.: Statistical learning of Harmonic Movement. Journal of New Music Research 28(2) (1999)

    Google Scholar 

  21. Rauber, A., Pampalk, E., Merkl, D.: Using psycho-acoustic models and SOMs to create a hierarchical structuring of music by sound similarity. In: Proc. Int. Symposium on Music Information Retrieval (ISMIR), Paris (2002)

    Google Scholar 

  22. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423, 623-656 (1948)

    MATH  MathSciNet  Google Scholar 

  23. Shannon, C.E.: Prediction and Entropy of Printed English. In: Sloane, N.J.A., Wyner, A.D. (eds.) Claude Elwood Shannon: Collected Papers. IEEE Press, New York (1993)

    Google Scholar 

  24. Skovenborg, E.: Musik Database. Unpubl. project report, Computer Science Dept., University of Copenhagen (Reviewed in Barchager, H. (1997) Datalogisk løsning pået musik pædagogisk problem. Anvendt Viden, 97(3), Videnskabsbutikken, Københavns Universitet) (1997)

    Google Scholar 

  25. Skovenborg, E.: Classification and Evolution of Music - Extracting Musical Features from Melodic Material, Master’s Thesis, Computer Science Dept. (DIKU), The University of Copenhagen (2000)

    Google Scholar 

  26. Witten, I.H., Manzara, L.C., Conklin, D.: Comparing Human and Computational Models of Music Prediction. Computer Music Journal 18(1), 70–80 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skovenborg, E., Arnspang, J. (2004). Extraction of Structural Patterns in Popular Melodies. In: Wiil, U.K. (eds) Computer Music Modeling and Retrieval. CMMR 2003. Lecture Notes in Computer Science, vol 2771. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39900-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39900-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20922-5

  • Online ISBN: 978-3-540-39900-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics