Abstract
A method is presented to extract musical features from melodic material. Various viewpoints are defined to focus on complementary aspects of the material. To model the melodic context, two measures of entropy are employed: A set of trained probabilistic models capture local structures via the information-theoretic notion of unpredictability, and an alternative entropy-measure based on adaptive coding is developed to reflect phrasing or motifs. A collection of popular music, in the form of MIDI-files, is analysed using the entropy-measures and techniques from pattern-recognition. To visualise the topology of the ‘tune-space’, a self-organising map is trained with the extracted feature-parameters, leading to the Tune Map.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alhoniemi, E., Himberg, J., Kiviluoto, K., Parviainen, J., Vesanto, J.: SOM Toolbox Version 1.0. Laboratory of Information and Computer Science, Helsinki University of Technology (1997) Internet WWWpage at, http://www.cis.hut.fi/
Aucouturier, J.-J., Pachet, F.: Music Similarity Measures: What’s the Use? In: Proc. of the Third International Conf. on Music Information Retrieval (ISMIR-2002), pp. 157–163 (2002)
Bell, T.C., Cleary, J.G., Witten, I.H.: Text Compression. Prentice Hall, Englewood Cliffs (1990)
Conklin, D., Cleary, J.G.: Modelling and generating music using multiple viewpoints. In: Proc. of the First Workshop on AI and Music (AAAI 1988), pp. 125–137 (1988)
Conklin, D., Witten, I.H.: Multiple viewpoint systems for music prediction. Journal of New Music Research 24(1), 51–73 (1995)
Downie, J.S.: Music Information Retrieval. In: Cronin, B. (ed.) Annual Review of Information Science and Technology, ch. 7, vol. 37, pp. 295–340. Information Today (2003)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, New York (2000)
Foote, J.: An overview of audio information retrieval. Multimedia Systems 7(1), 2–10 (1999)
Handel, S.: Listening: an introduction to the perception of auditory events. The MIT Press, Cambridge (1989)
Hewlett, W.B., Selfridge-Field, E. (eds.): Melodic Similarity - Concepts, Procedures and Applications. Computing in Musicology, vol. 11. MIT Press, Cambridge (1998)
Howell, P., West, R., Cross, I. (eds.): Representing Musical Structure. Cognitive Science Series. Academic Press, London (1991)
Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)
Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Berlin (1997)
Krumhansl, C.L.: Cognitive Foundations of Musical Pitch. Cambridge University Press, Cambridge (1990)
Lemström, K.: String Matching Techniques for Music Retrieval, PhD Thesis, Dept. of Computer Science, Report A-2000-04, University of Helsinki (2000)
Madsen, L.B., Grøn, J., Krøgholt, D. (eds.): Folkehøjskolens Sangbog, 17th edn., Foreningen for folkehøjskolers forlag, Gylling, Denmark (1997)
MPEG Information Technology - Multimedia Content Description Interface - Part 4: Audio (ISO/IEC CD 15938-4, part of MPEG-7), ISO/IEC JTC 1/SC 29/WG 11 (2001)
MPEG Requirements Group MPEG-7 Context and Objectives (ISO/IEC JTC1/SC29/WG11, N2460), International Organisation for Standardisation (1998)
Pachet, F., Cazaly, D.: A Taxonomy of Musical Genres. In: Proc. of Content-Based Multimedia Information Access Conference (RIAO), Paris (2000)
Ponsford, D., Wiggins, G., Mellish, C.: Statistical learning of Harmonic Movement. Journal of New Music Research 28(2) (1999)
Rauber, A., Pampalk, E., Merkl, D.: Using psycho-acoustic models and SOMs to create a hierarchical structuring of music by sound similarity. In: Proc. Int. Symposium on Music Information Retrieval (ISMIR), Paris (2002)
Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423, 623-656 (1948)
Shannon, C.E.: Prediction and Entropy of Printed English. In: Sloane, N.J.A., Wyner, A.D. (eds.) Claude Elwood Shannon: Collected Papers. IEEE Press, New York (1993)
Skovenborg, E.: Musik Database. Unpubl. project report, Computer Science Dept., University of Copenhagen (Reviewed in Barchager, H. (1997) Datalogisk løsning pået musik pædagogisk problem. Anvendt Viden, 97(3), Videnskabsbutikken, Københavns Universitet) (1997)
Skovenborg, E.: Classification and Evolution of Music - Extracting Musical Features from Melodic Material, Master’s Thesis, Computer Science Dept. (DIKU), The University of Copenhagen (2000)
Witten, I.H., Manzara, L.C., Conklin, D.: Comparing Human and Computational Models of Music Prediction. Computer Music Journal 18(1), 70–80 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Skovenborg, E., Arnspang, J. (2004). Extraction of Structural Patterns in Popular Melodies. In: Wiil, U.K. (eds) Computer Music Modeling and Retrieval. CMMR 2003. Lecture Notes in Computer Science, vol 2771. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39900-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-39900-1_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20922-5
Online ISBN: 978-3-540-39900-1
eBook Packages: Springer Book Archive