Skip to main content

Numerical Constraint Satisfaction Problems with Non-isolated Solutions

  • Conference paper
Global Optimization and Constraint Satisfaction (COCOS 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2861))

Abstract

In recent years, interval constraint-based solvers have shown their ability to efficiently solve complex instances of non-linear numerical CSPs. However, most of the working systems are designed to deliver point-wise solutions with an arbitrary accuracy. This works generally well for systems with isolated solutions but less well when there is a continuum of feasible points (e.g. under-constrained problems, problems with inequalities). In many practical applications, such large sets of solutions express equally relevant alternatives which need to be identified as completely as possible. In this paper, we address the issue of constructing concise inner and outer approximations of the complete solution set for non-linear CSPs. We propose a technique which combines the extreme vertex representation of orthogonal polyhedra 1,2,3, as defined in computational geometry, with adapted splitting strategies 4 to construct the approximations as unions of interval boxes. This allows for compacting the explicit representation of the complete solution set and improves efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguilera, A.: Orthogonal Polyhedra: Study and Application. PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain (1998)

    Google Scholar 

  2. Bournez, O., Maler, O., Pnueli, A.: Orthogonal Polyhedra: Representation and Computation. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 46–60. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Bournez, O., Maler, O.: On the Representation of Timed Polyhedra. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, p. 793. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Silaghi, M.C., Sam-Haroud, D., Faltings, B.: Search Techniques for Non-linear CSPs with Inequalities. In: Proceedings of the 14th Canadian Conference on AI (2001)

    Google Scholar 

  5. Van Hentenryck, P.: A Gentle Introduction to Numerica (1998)

    Google Scholar 

  6. ILOG: ILOG Solver. Reference Manual (2002)

    Google Scholar 

  7. Jaulin, L.: Solution Globale et Guarantie de Problèmes Ensemblistes: Application à l’Estimation Non Linéaire et à la Commande Robuste. PhD thesis, Université Paris-Sud, Orsay (1994)

    Google Scholar 

  8. Sam-Haroud, D., Faltings, B.: Consistency Techniques for Continuous Constraints. Constraints 1(1-2), 85–118 (1996)

    Article  MathSciNet  Google Scholar 

  9. Garloff, J., Graf, B.: Solving Strict Polynomial Inequalities by Bernstein Expansion. In: Symbolic Methods in Control System Analysis and Design, pp. 339–352 (1999)

    Google Scholar 

  10. Benhamou, F., Goualard, F.: Universally Quantified Interval Constraints. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 67–82. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Vu, X.H., Sam-Haroud, D., Silaghi, M.C.: Approximation Techniques for Nonlinear Problems with Continuum of Solutions. In: Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 224–241. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Lhomme, O.: Consistency Techniques for Numeric CSPs. In: Proceedings of IJCAI 1993 (1993)

    Google Scholar 

  13. Collavizza, H., Delobel, F., Rueher, M.: Extending Consistent Domains of Numeric CSP. In: Proceedings of IJCAI 1999 (1999)

    Google Scholar 

  14. Van Iwaarden, R.J.: An Improved Unconstrainted Global Optimization Algorithm. PhD thesis, University of Colorado at Denver, USA (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vu, XH., Sam-Haroud, D., Silaghi, MC. (2003). Numerical Constraint Satisfaction Problems with Non-isolated Solutions. In: Bliek, C., Jermann, C., Neumaier, A. (eds) Global Optimization and Constraint Satisfaction. COCOS 2002. Lecture Notes in Computer Science, vol 2861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39901-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39901-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20463-3

  • Online ISBN: 978-3-540-39901-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics