Abstract
This work contains a clinical validation using biological landmarks of a Geometry Constrained Diffusion registration of mandibular surfaces. Canonical Correlations Analysis is extended to analyse 3D landmarks and the correlations are used as similarity measures for landmark clustering. A novel Active Shape Model is proposed targeting growth modelling by applying Partial Least Squares regression in decomposing the Procrustes tangent space. Shape centroid size is applied as dependent variable but the method generalizes to handle other, both uni- and multivariate, effects probing for high covariation wrt. shape variation.
Chapter PDF
Similar content being viewed by others
Keywords
- Partial Little Square
- Canonical Correlation Analysis
- Iterative Close Point
- Centroid Size
- Active Shape Model
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Andresen, P.R., Bookstein, F.L., Conradsen, K., Ersbøll, B.K., Marsh, J., Kreiborg, S.: Surface-bounded growth modeling applied to human mandibles. IEEE Transactions on Medical Imaging 19(11), 1053–1063 (2000)
Andresen, P.R., Nielsen, M.: Non-rigid registration by geometry-constrained diffusion. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 533–543. Springer, Heidelberg (1999)
Besl, P.J., McKay, N.D.: A method for registration of 3d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2) (1992)
Björk, A., Skieller, V.: Normal and abnormal growth of the mandible. A synthesis of longitudinal cephalometric implant studies over a period of 25 years. Eur. J. Orthodontics 5, 1–46 (1983)
Cooley, W.W., Lohnes, P.R.: Multivariate Data Analysis. John Wiley and Sons, New York (1971)
Cootes, T.F., Taylor, G.J., Cooper, D.H., Graham, J.: Training models of shape from sets of examples. In: British Machine Vision Conference: Selected Papers. Springer, Berlin (1992)
Cootes, T.F., Cooper, D., Taylor, C.J., Graham, J.: Active shape models - their training and application. Comp. Vision and Image Understanding 61(1), 38–59 (1995)
Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Chichester (1997)
Frank, E., Friedman, J.H.: A statistical view of some chemometrics regression tools. Technometrics 35(2), 109–135 (1993)
Gower, J.C.: Generalized Procrustes analysis. Psychometrika 40, 33–51 (1975)
Hilger, K.B., Larsen, R., Wrobel, M.: Growth modeling of human mandibles using non-euclidean metrics. Medical Image Analysis (2003) (to appear)
Hilger, K.B.: Exploratory Analysis of Multivariate Data. PhD thesis, Department of Informatics and Mathematical Modelling, Technical University of Denmark (2001)
Höskuldsson, A.: PLS regression methods. Jour. of Chemometrics 2, 211–228 (1986)
Hotelling, H.: Relations between two sets of variates. Biometrika XXVIII 321–377 (1936)
Kreiborg, S., Aduss, H., Cohen Jr., M.M.: Cephalometric study of the Apert syndrome in adolescence and adulthood. J. Craniofacial Genetics Develop. Biol. 19, 1–11 (1999)
Larsen, R., Hilger,K.B.: Statistical shape analysis using non-euclidean metrics. Medical Image Analysis (2003) (to appear)
Nielsen, M., Johansen, P., Jackson, A.D., Lautrup, B.: Brownian warps: A least committed prior for non-rigid registration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 557–564. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hilger, K.B., Larsen, R., Kreiborg, S., Krarup, S., Darvann, T.A., Marsh, J.L. (2003). Active Shape Analysis of Mandibular Growth. In: Ellis, R.E., Peters, T.M. (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. MICCAI 2003. Lecture Notes in Computer Science, vol 2879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39903-2_110
Download citation
DOI: https://doi.org/10.1007/978-3-540-39903-2_110
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20464-0
Online ISBN: 978-3-540-39903-2
eBook Packages: Springer Book Archive