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Abstract. Anatomical structures contain various types of curvilinear or
tube-like structures such as blood vessels and bronchial trees. In medical
imaging, the extraction and representation of such structures are of clin-
ical importance. Complex curvilinear structures can be best represented
by their center lines (or skeletons) along their elongated direction. In
this paper, a gradient-based method for ridge point extraction on tubu-
lar objects is presented. Using the gradients of distance maps or intensity
profiles usually generates skeleton surfaces for 3D objects, which is not
desirable for representing tubular objects. To extract only the points
on the centerline, we first employ the gradient vector flow (GVF) tech-
nique and then apply eigenanalysis of the Hessian matrix to remove false
positive points. We present various results of the method using CLSM
(Confocal Laser Scanning Microscopy) images of blood fibrins and CT
images of a skull and lungs. Our method is efficient and allows for com-
pletely automatic extraction of points along the centerline of a tubular
object in its elongated direction.

1 Introduction

Anatomical structures contain various types of curvilinear or tube-like structures
such as blood vessels and bronchial trees. In medical imaging, the extraction
and representation of such objects are of clinical importance. Complex curvilin-
ear structures can be best represented by their centerlines (or skeletons) along
their elongated direction. Clinical applications of skeletons, for example, include
radiation therapy planning, epilepsy surgical planning, and path planning for
endoscopic navigation systems. Although a number of methods have been devel-
oped to extract centerlines of tubular objects, most of them are semi-automatic,
requiring user intervention such as selecting seed points. In this paper, we present
an efficient method for ridge point detection on tubular objects. This method
allows for completely automatic extraction of the points along the centerline of
a tubular object. We begin with the discussion of relevant methods for skele-
tonization. We then present our scan-conversion method in 2D and extend it to
3D. The skeletons of 3D objects normally consist of skeleton surfaces and curves,
which is not desirable for representing tubular objects. In order to avoid skeleton
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surfaces and extract only the points on the centerline of an object in its elon-
gated direction, we first employ the gradient vector flow (GVF) technique and
then apply eigenanalysis of the Hessian matrix to remove false positive points.
Finally, we present the results of experiments using CLSM (Confocal Laser Scan-
ning Microscopy) images of blood fibrins and CT images of a skull and lungs.
Without loss of generality, our method assumes that the objects of interest are
brighter (or darker) than the background and their centerlines coincide with the
height ridges on the intensity profile.

2 Previous Work

Traditionally, skeletons are obtained by defining a medialness measure and as-
signing to each point inside an object the distance to the nearest boundary of
the object according to the metric defined. Then, on the centerline of the object
are the points of equi-distance from at least two object boundary points, forming
a ridge on the distance surface. A skeleton is the projection of the ridge onto
the image plane. This method, however, cannot be applied directly to grayscale
images, where the object’s boundary is not known a priori. In grayscale images,
including medical images, the objects of interest are usually identified as rela-
tively brighter (or darker) regions and intensity ridges tend to be at the center
of such regions at a given scale. Therefore, intensity ridges have been used as a
reliable approximation to the skeletons [4,6,8].

Previous work on skeletonization can be classified into two categories. The
first approach consists of extracting ridge points and connecting them in a post-
processing step [7,9,12,16]. Since it usually uses purely local criteria, this ap-
proach generates false positives for ridge points. To obtain skeletons as connected
curves, it has to use elaborate grouping schemes [5].

The second approach extracts skeletons by searching for a ridge point at the
neighborhood of a given ridge point [1,2,10,18]. This approach generates skele-
tons as curves without any post-processing steps and the thinness of the skeletons
is guaranteed. However, searching extrema in high dimensional parameter space
can be computationally expensive. It also needs to provide a set of criteria or
heuristics to handle special cases such as branching points and endpoints. Fi-
nally, the seed points selection, which is usually done manually, may hinder the
method from automation.

In this paper, we propose an efficient method for ridge point detection. It
is a gradient-based method especially for objects with almost circular cross-
sections. Using the gradients of distance maps or intensity profiles usually gen-
erates skeleton surfaces for 3D objects, which is not desirable for representing
tubular objects. To extract only the points on the centerline along the object’s
elongated direction, we also employ the gradient vector flow (GVF) technique
and eigenanalysis of the Hessian matrix.
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Fig. 1. Sign barriers. (a) Curvilinear object, (b) Normalized gradient vectors, and (c)
Normalized gradient vectors projected onto horizontal lines.

3 Method

Scan-conversion algorithm is a gradient-based ridge point detection method. To
introduce the algorithm, we begin with the extraction of center lines of curvi-
linear objects in 2D and then extend it to 3D. Without loss of generality, we
assume that the objects of interest are brighter than the background and their
centerlines coincide with the height ridges on the intensity profile.

3.1 Scan-Conversion Algorithm in 2D

It is well known that the gradient at any point on such objects generally points
towards the ridge and reverses its direction as it crosses the ridge [11,12]. Simi-
larly, for a point to be on a ridge, it must be a local maximum on some direction,
i.e., on a line passing through the point. Consider a line (Lθ) with an arbitrary
orientation θ and three contiguous points (p−1, p0, p+1) on it. If p0 is on a ridge,
the gradients at p−1 and p+1 must point toward p0, forming a sign barrier be-
tween them. Figure 1 (b) illustrates an example of sign barriers around a ridge
of a curvilinear structure in (a). Note that the sign barriers are not easily identi-
fiable at some part of the object. We can enhance the sign barriers by projecting
gradient vectors onto Lθ, as illustrated in (c), where θ = 0 (horizontal lines) is
used. In summary, if a ridge intersects Lθ, it generates a sign barrier on the line,
i.e., between the two adjacent points that enclose the point of intersection.

It has been reported that examining four orientations (0, 45, 90, and 135
degrees) at each point identifies (in fact, over-identifies) all the ridge points [9,
14,15]. To determine the minimum number of orientations, consider Lθ again.
As discussed before, if a ridge intersects Lθ, it generates a sign barrier between
two adjacent points enclosing the point of intersection. The ridge point (i.e.,
the intersection point) is thus guaranteed to be detected by the sign barrier.
On the other hand, if a ridge is nearly parallel to Lθ and does not intersect
it, the ridge may or may not produce a sign barrier on Lθ. Another line (Lθ′)
with an orientation substantially different from the orientation of the ridge (or,
equivalently, from that of Lθ) will detect such a ridge point, since the ridge
parallel to Lθ will appear perpendicular to Lθ′ and intersect it at some point,
generating a sign barrier on it. For Lθ and Lθ′ to have sufficiently different
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Fig. 2. Ridge points on H-shaped object. (a) Distance map of the shape, (b) Sign
barriers on L0, and (c) Sign barriers on L90.

orientation, it is natural to use θ′ = θ + 90. Figure 2 succinctly illustrates these
observations. Figure 2(a) shows the distance map of a simple H-shaped object.
Although the distance map was used here to generate the gradient vector field
of the binary object, we will show how the algorithm can be applied to grayscale
images without distance transform in Sect. 3.2. Figure 2(b) and (c) show the
sign barriers on L0 and L90, respectively. Note that the horizontal ridge in the
middle of the object is not present in (b), since the ridge is parallel to L0 and
does not intersect it. As expected, however, the horizontal ridge is detected by
L90 in (c). Similarly, two vertical ridges of the shape are not detected in (c) but
are present in (b). Combining together, L0 and L90 detect all the ridge points
on the distance map.

The discussion so far leads us to a simple scan-conversion algorithm for ridge
point detection. Given a gradient vector field ∇I(x, y) = 〈vx, vy〉, two vector
fields (Nθ and Nθ+90) are computed by projecting the gradients onto Lθ and
Lθ+90. If we use θ = 0, the projection is simply:

N0(x, y) = 〈 sign(vx), 0 〉
N90(x, y) = 〈 0, sign(vy) 〉 .

Then, the algorithm scans N0 with L0 from top to bottom and N90 with L90
from left to right. For each scan, it searches for sign barriers on L0 from left to
right and L90 from top to bottom. Finally, it combines the points of sign barriers
on L0 and L90.

3.2 3D Extension

The generalization of scan-conversion algorithm to 3D objects can be achieved
by adding another orthogonal line. We use three orthogonal lines, Lx, Ly, and
Lz, parallel to x, y, and z-axis, respectively. This simple extension of our al-
gorithm, however, produces skeleton surfaces as illustrated in Fig. 3 (a). Three
vector fields (Nx, Ny, Nz) were generated from the distance map gradients of a
parallelepiped.

Although skeleton surfaces from 3D objects are theoretically correct [3], we
are more interested in skeleton curves especially for tubular objects, i.e., the
centerlines along the objects’ elongated direction. The difficulty in using dis-
tance maps for extraction of skeleton curves of 3D objects is that the distance
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Fig. 3. Scan-conversion algorithm on a parallelepiped. (a) Skeleton surfaces from dis-
tance map. (b) Skeleton points from GVF field. (c) Skeleton curve after pruning by
eigenanalysis.

transform generates plateaus (i.e., gradients vanishes there) which constitute
skeleton surfaces. In addition, the distance transform cannot be applied directly
to grayscale images. To avoid both difficulties, we use the Gradient Vector Flow
(GVF) field [17].

The GVF field, v(x, y, z) = 〈 u(x, y, z), v(x, y, z), w(x, y, z) 〉, is defined in [17]
to minimize the energy functional

E =
∫∫∫

µ |∇v |2 + |∇f |2 |v − ∇f |2 dx dy dz

where the edge map, f(x, y, z), is defined as

f(x, y, z) = − | ∇[Gσ(x, y, z) ∗ I(x, y, z)] |2 .

Note that the edge map f is negated, compared to the original edge map in [17],
to make ∇f point away from its edges. This variational formulation keeps the
vector field nearly equal to ∇f in the regions where | ∇f | is large (second
term) and forces it to be slowly-varying in homogeneous region where | ∇f | is
small (first term). Using the calculus of variations and introducing time to v
( = v(x, t) ), we obtain the following vector diffusion equation:

vt = µ∇v − (v − ∇f) |∇f |2
v(x, 0) = ∇f(x)

where vt is the partial derivative of v with respect to time t. Since GVF solves
these decoupled equations as separate partial differential equations in each com-
ponent of v, some points that are not on centerlines along the object’s elongated
direction may have false sign barriers and be detected as shown in Fig. 3 (b).
These points are pruned out by eigenanalysis of the Hessian matrix as in [2,13].
The Hessian matrix of a 3D image, I(x), where x = (x, y, z) is given by

H =


 I∗

xx(x; σ) I∗
xy(x; σ) I∗

xz(x; σ)
I∗
yx(x; σ) I∗

yy(x; σ) I∗
yz(x; σ)

I∗
zx(x; σ) I∗

zy(x; σ) I∗
zz(x; σ)






Scan-Conversion Algorithm for Ridge Point Detection on Tubular Objects 163
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Fig. 4. (a), (b) CLSM images of blood fibrin. (b) CT image of a skull.

where, I∗ = Gσ(x)∗I(x) and the subscripts are the usual partial derivatives. Let
λ1(x), λ2(x), and λ3(x) (λ1(x) > λ2(x) > λ3(x)) be the eigenvalues of H, and
e1(x), e2(x), and e3(x) the corresponding eigenvectors. Then, e1(x) gives the
direction along which the second derivative is maximal and λ1(x) the maximum
value of the second derivative. At a ridge point x, λ2(x)and λ3(x) have the
minimum values and must be negative:

λ3(x) ≤ λ2(x) < 0 .

Also, the ridge point x must be a local maximum on the plane defined by e2(x)
and e3(x), thus:

e2(x) • ∇I∗(x; σ) = 0 and e3(x) • ∇I∗(x; σ) = 0 .

Ridge points detected from the GVF field are checked against these conditions
and discarded if they fail. Figure 3 (c) shows the result after checking the two
conditions on the points in (b).

4 Experiments

We evaluate the method using CLSM images of blood fibrins, a CT image of
a skull, and CT images of lungs. All experiments were performed on a Dell
computer with 2GHz Xeon processor and 768MB of memory.

Figure 4 shows the extracted centerlines of curvilinear structures in 2D
grayscale images. The scan-conversion algorithm with GVF field eliminates the
use of distance maps and can be applied directly to grayscale images. In the
figure, 30 iterations of GVF computations were performed with µ = 0.2 and
∆t = 0.01.

Figure 5 shows the lung vessels extracted from CT data. In the figures, CT
images were digitally resliced to make cubic voxels and the volumes of interest
(VOI) extracted—128 × 128 × 270, 100 × 128 × 270, and 74 × 120 × 200 voxels
from left to right in the figure. Then, 50 iterations of GVF computation were
performed on each VOI with µ = 0.2 and ∆t = 0.01. Finally, vessels were
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Fig. 5. Lung vessels from CT. The volumes of interest are, from left to right, 128 ×
128 × 270, 100 × 128 × 270, and 74 × 120 × 200 voxels.

extracted with the scan-conversion algorithm. The process for each VOI took
approximately 3.4 min, 1.6 min, and 0.75 min. Note that, due to its extensive
floating point calculations, most of the processing times were spent on GVF
computation—3.2 min, 1.5 min, and 0.7 min, respectively. However, the scanning
process was very fast and took substantially less than a minute for each VOI.

To validate our method, the detected points were projected onto the CT
image as shown in the top-right image in Fig. 5. Through visual inspection of
the projections, we found the good alignment between the detected points and
the centerlines of the vessels.

5 Conclusion

We have introduced a scan-conversion algorithm for ridge point detection. The
algorithm is a gradient-based method that detects sign barriers on two (or, three
in 3D) orthogonal lines.

Gradient vectors are initially obtained from distance maps of given objects,
which pose two difficulties. First, the distance transform cannot be applied di-
rectly to grayscale images, limiting our applications to binary objects. Second,
the distance transform of 3D objects produces plateaus where gradients vanishes,
forcing the algorithm to extract skeleton surfaces. To avoid both difficulties, we
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use the Gradient Vector Flow (GVF) field. Using the GVF field, however, ex-
tracts points that are not on the centerline along the object’s elongated direction.
Such points are identified and discarded by eigenanalysis of the Hessian matrix.

We presented various results of the method using CLSM images of fibrin,
skull CT, and 3D lung CT data. Although the GVF computation is demanding,
the experiments show that our method is efficient.
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