
R.E. Ellis and T.M. Peters (Eds.): MICCAI 2003, LNCS 2879, pp. 391–398, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Relative Performance of Geometric Search Algorithms
for Interpolating Unstructured Mesh Data

Mahdieh Khoshniat1,2, Gordan R. Stuhne1, and David A. Steinman1,2

1Imaging Research Labs, Robarts Research Institute
���������	�
���
���

����������	��	������
����

and
2Biomedical Engineering Program, The University of Western Ontario, London,

Ontario, Canada

Abstract. Interpolation of field data from unstructured meshes requires the po-
tentially expensive identification of the finite element or volume within which
the interpolating point lies. A number of geometric search algorithms have been
proposed to reduce this expense at the cost of setting up and storing additional
search tables. Using tetrahedral finite element models we show that a structured
auxiliary mesh (SAM) algorithm can achieve search speeds well in excess of
100,000 points/sec—at least an order of magnitude better than digital tree or
nearest neighbour searches—with only modest setup times and storage re-
quirements. Our novel SAM variant is found to offer the best performance per
unit of storage, but at the expense of considerable setup times. We conclude
that SAM algorithms can be used to provide a flexible “software-only” ap-
proach for real-time interpolation and visualization of unstructured mesh data.

1 Introduction

Unstructured meshes are an unavoidable fact of life in the engineering analysis of
complex domains and the visualization of the resulting field data. An unstructured
mesh is ordinarily defined by a list of nodal coordinates at which the field data is pre-
scribed and/or solved; a table defining how these nodes are connected to form the un-
derlying finite elements or volumes; and the shape functions that define how, for each
element, the field data vary between nodes. Interpolation of such piecewise continu-
ous data therefore requires identification of the element or volume within which the
interpolating point lies, followed by interpolation using the connected node data and
known shape functions. The latter is straightforward, whereas the former—a process
often referred to as “geometric searching”—can require fairly sophisticated algo-
rithms in order to be performed in a computationally efficient manner.

To illustrate this, consider a naïve approach in which, for each interpolating point,
each and every element is searched. While algorithmically simple, the computational
effort obviously scales with the number of elements in the mesh, which in the case of
3D models renders this approach prohibitively expensive. Instead, more sophisticated
algorithms have been proposed to reduce the number of elements queried, at the ex-
pense of creating and storing additional search tables. Below we review a number of
geometric search strategies, including one proposed here for the first time, after which
we assess their relative performance for finding random points within non-trivial tet-
rahedral finite element meshes.

392 M. Khoshniat, G.R. Stuhne, and D.A. Steinman

2 Geometric Search Strategies

2.1 Nearest Neighbour (NN)

In this approach, first suggested by Bercovier [1], the node nearest the interpolating
point is first identified, and then only elements surrounding that node are searched. It
is easy to see how this can substantially reduce the number of element queries; how-
ever, this savings is achieved at the not insubstantial cost of calculating distances
from the interpolating point to each node in the mesh. Moreover, the nearest node will
not necessarily be connected to the element containing the interpolating point. Thus, it
is usually necessary to query a least one extra “layer” of elements surrounding the
nearest node to ensure robustness. In addition to its obvious simplicity, an advantage
of nearest neighbour searches is the negligible setup and storage requirements: the
search table simply consists of a vector of nodes pointing to another vector of con-
nected elements.

2.2 Alternating Digital Tree (ADT)

Digital trees are recursive data structures commonly used for searching and sorting
operations. They are constructed by defining a root, and assigning an element to one
of two branches based upon whether the bounding box of that element satisfies some
geometric condition. By following this procedure for all elements in a list, a tree is
built up in such a way that, when searching for the location of an element, each search
step ideally reduces the number of elements (M) to be checked by a factor of two, re-
sulting in search times that can scale with O(log M). Digital tree algorithms are par-
ticularly attractive for unstructured mesh generation, in that setup times and tree stor-
age requirements are modest—proportional to the number of elements—and thus
trees can be easily modified as new elements are introduced. A popular variant is the
alternating digital tree (ADT) algorithm [2], which provides well-defined branch cri-
teria for the general case of N-dimensional meshes.

2.3 Structured Auxiliary Mesh (SAM)

First demonstrated by Pissanetzky and Basombrio [3], structured auxiliary meshes
(SAMs) are regular Cartesian grids superimposed onto the unstructured domain. For
each SAM element, hereafter referred to as a voxel, the overlapping unstructured
elements are tabulated in a preprocessing step. (As implemented by these authors, it is
the bounding boxes of the unstructured elements that are actually used to identify
overlap.) Queries are then performed via the trivial identification of the voxel within
which the interpolating point falls, followed by testing only those overlapping ele-
ments. It is not difficult to see that the relative efficiency of this approach scales with
the density of the grid: finer voxels require fewer element queries, but at the price of
longer setup times and increased storage requirements, as the search table now con-
sists of a vector of voxels pointing to another vector of overlapping elements.

Relative Performance of Geometric Search Algorithms 393

2.4 Structured Auxiliary Mesh with Element Storage (SAMe)

As noted above, the original SAM algorithm sim
fying those unstructured elements whose bounding
the case of, say, thin elements oriented obliquely t
see that the number of voxels intersecting that ele
ing in an increase in storage requirements and the
viate this we propose here a novel and simple
extension of this original SAM algorithm, in
which the actual element boundaries rather
than the element bounding boxes are used to
determine voxel intersections. This serves to
reduce the storage requirements—only truly
overlapping elements are tabulated—but at in-
creased setup times owing to the cost of testing
for the intersection of two 3D objects (ie, a
cube and a tetrahedron). To moderate this com-
putational overhead, we project each element
onto the three cardinal planes, in which case 3D
intersection is true only when the (triangular or
quadrilateral) tetrahedral projections intersect
with the projected voxel in all three directions.
As illustrated in Fig. 1, the useful corollary of
this is that non-intersection for one 2D projec-
tion implies non-intersection in 3D. To con-
tinue this idea of progressively excluding cases
of intersection, for each projection we ask, al-
gorithmically, the following questions:

1.� Do any of the element’s projected nodes fall
2.� Do any of the projected voxel’s corners fall w
3.� Do any of the projected element’s edges inte

As soon as one of these is answered positively for
rectly to the next projection. Conversely, if all an
tion, then no 3D intersection has occurred.

3 Methods

The models used to test the performance of the geo
above were taken from computational fluid dynam
flow, the real-time and interactive visualization
work. Specifically, two different models were co
symmetric carotid bifurcation model composed of
and 17,470 nodes (hereafter referred to as model
anatomically realistic aneurysm model composed
and 311,507 nodes (hereafter referred to as model
plified the setup process by identi-
 boxes intersected a given voxel. In
o the cardinal axes, it is not hard to
ment will be overestimated, result-
 number of element queries. To ob-
 within the projected voxel?
ithin the projected element?

rsect the projected voxel’s edges?

a given projection, we can move di-
swers are “no” for a given projec-

metric search algorithms described
ics (CFD) models of arterial blood

of which ultimately motivates this
nsidered: a relatively coarse half-
 83,120 linear tetrahedral elements
83k, and shown in Fig. 2a); and an
 of 1,704,392 tetrahedral elements
1.7M, and shown in Fig. 2b).

Fig. 1. Non-intersection of at least one
2D projection is sufficient to exclude
3D intersection.

394 M. Khoshniat, G.R. Stuhne, and D.A. Steinman

Performance was evaluated via the following quantities. Speed was defined as the
number of interpolating points identified per CPU-second. Setup time was defined as
the CPU time required for creating the search tables, while storage was defined as the
RAM required to store the search tables. Speed was calculated by searching for the
locations of 1,000,000 points seeded randomly throughout the SAM (ie, mesh)
bounding box and then, separately, only within the unstructured mesh itself. For both
SAM algorithms the size of the nominally cubic voxels was defined relative to the
mean unstructured element volume, i.e., Vvoxel = KVelem, where relative voxel volumes
ranging from K=1000 to K=0.01 were tested within the limits of available memory.

All tests were performed on a 1.8 GHz AMD Athlon workstation running Red Hat
Linux version 7.3. All code was written in C++, and compiled using gcc version 2.96
with optimization level 3. CPU times for speed and setup were determined using the
gprof code profiling utility.

4 Results

The relative performance of the geometric search algorithms is summarized in Fig. 3.
For all but the largest voxels tested the SAM algorithms achieved the fastest search
speeds, typically more than 100,000 points/sec. With decreasing voxel volume our
SAMe algorithm outperformed the conventional SAM algorithm by up to 100%,
achieving speeds of more than 1,000,000 points/sec for the finest voxels tested. Both
SAM algorithms outperformed the ADT algorithm, which achieved speeds on the or-
der of 10,000 points/sec. The poorest performance was noted for the NN algorithm,
which achieved speeds of less than 1000 points/sec.

Fig. 2. Tetrahedral finite element meshes used to test geometric search performance, shown
with SAMs having relative voxel volumes of 1000: (a) 83k element idealized carotid bifurca-
tion mesh; (b) 1.7M element realistic aneurysm mesh.

Relative Performance of Geometric Search Algorithms 395

Fig. 3a alone suggests that the ADT algorithm performed similarly for both the
coarse and fine meshes, while the SAM and SAMe algorithms were actually faster for
the fine mesh. These counter-intuitive observations can, however, be explained by
noting that, for the 83k model, the volume of the bounding box was roughly 4× that of
the mesh itself, whereas for the 1.7M model the bounding box volume was more than
25× the mesh volume. As a result, the speeds reported in Fig. 3a were effectively bi-
ased by the inclusion of many more empty voxels, and hence faster searches on aver-
age, for the 1.7M model. As shown in Fig. 3b, in the absence of these empty voxels
both the SAM and SAMe algorithms achieved comparable speeds for both models.
Similarly for the ADT algorithm search speeds were reduced proportionally according
to the amount of “empty space” within the bounding box. Conversely, the NN algo-
rithm saw little change in the search speeds when confined to searching for points
within the mesh; this was expected, since NN algorithms must check all nearest
neighbours whether points are inside or outside the mesh.

Fig. 4 confirms that increases in search speed are obtained at the cost of increased
storage and/or setup times. For the NN and ADT algorithms these were modest: only
a few seconds were required to create—and less than 30 Mb to store—the search ta-
bles even for the 1.7M element mesh. Storage requirements for the SAM algorithms
were comparable to those for the NN and ADT algorithms for large voxel volumes,
but increased exponentially with decreasing voxel volume. Our SAMe algorithm re-
quired less storage than the SAM algorithm, with savings up to 50% for the finest
voxels. These savings, which parallel the increases in speed reported above for the
SAMe algorithm, are achieved by storing, and hence searching, only those elements
actually intersecting a given voxel. However, as Fig. 4b clearly shows, these advan-
tages were achieved at the substantial expense of setup times on the order of a few
minutes versus the few seconds required for the NN, ADT, and SAM algorithms.

Finally, Fig. 5a shows that the SAMe algorithm achieves the best speed:storage ra-
tios; however, for both SAM and SAMe algorithms the optimal ratio occurs for rela-
tive voxel volumes ≈10, which, as Fig. 5b shows, correspond to storage requirements
on the order of the respective connectivity table. Beyond this “optimal” voxel size,
speed increases are achieved with increasingly heavier storage penalties.

Fig. 3. Search speeds for points randomly seeded within: (a) the mesh bounding box; and (b)
the mesh only.

3

D

O
p
f
i
t
t
b
r
r
w

F
o
m

96 M. Khoshniat, G.R. Stuhne, and D.A. Steinman

Fig. 4. (a) Storage requirements and (b) setup times for search tables. See Fig. 3 for legend.
iscussion

ur results demonstrate that structured auxiliary mesh (SAM) search algorithms out-
erform nearest neighbour (NN) and alternating digital tree (ADT) search algorithms
or the case of points randomly seeded around and/or within an unstructured mesh,
ndependent of unstructured mesh density. Given the demonstrated ability to identify
he location of more than 100,000 points/sec, and notwithstanding the additional CPU
ime required for interpolating the field data itself, these finding suggest that it should
e possible to interactively slice through high resolution unstructured field data in
eal-time. To demonstrate this, we interpolated the velocity field of the 1.7M aneu-
ysm model onto a 120×84 oblique slice using the SAM and SAMe algorithms each
ith a relative voxel volume of 8. The resulting velocity field data, shown in Fig. 6,

ig. 5. (a) Speed normalized to relative storage, and (b) relative storage, defined as the mem-
ry required to store the search table divided by the memory required to store the respective
esh’s connectivity table. See Fig. 3 for legend.

Relative Performance of

were interpolated within 30 and 20 msec, re-
spectively, well within the 30-60 Hz required
for real-time interaction.

Of course such real-time interpolation can be
achieved through the use of hardware rendering
techniques, but these are not always available
or portable across architectures. Furthermore,
they are typically restricted to simple element
types such as linear tetrahedra. Although it is
usually possible to decompose any type of fi-
nite element or volume into tetrahedra [4], this
can compromise the accuracy of the interpola-
tion, especially for higher-order elements. In-
stead, the element testing routines underlying
the SAM algorithms can obviously be extended
to handle any element type, at the potential loss
of speed for complex or higher-order elements.
Combined with the relative ease with which
search speed, storage and setup time can be
traded-off by adjusting the voxel volume, this ma
to such software-based rendering. In this context
required for the SAMe algorithm may be tolerated
interacting with such data. Moreover, the long se
the setup tables for a default voxel volume along
each time data is loaded search tables need only be

Although we have argued that SAM algorithms
visualization applications that motivate our work
SAM algorithms will not necessarily outperform
applications involving geometric searching. For
frame (e.g., particle tracking, methods-of-characte
racy restrictions may require the use of relatively s
trajectory, in which case it is usually sufficient—
merely check the current and neighbouring eleme
pensive distance calculations that otherwise comp
rithms. In the context of mesh generation, SAM
superior to algorithms that have been developed f
algorithm, since digital trees are more easily updat

Finally, we note that further trade-offs between
ments for the SAM algorithms may be possible.
storage strategy that reduces the size of the vector
from the total number of voxels to twice the num
the unstructured mesh. For the 1.7M model this
ments by a factor or two for the smallest voxels te
tentially significant reduction in search speed ow
search step. (A similar trade-off may also be achi
SAM approaches [3].) Information about how th
could also be exploited to optimize trade-offs bet
 Geometric Search Algorithms 397
kes SAM algorithms ideally suited
even the few minutes of setup time
 relative to the times typically spent
tup times can be avoided by storing
with the unstructured mesh, so that
 reread, not recreated.
 are ideally suited to the interactive
, it is important to recognize that
NN and ADT algorithms for other
 computations in the Lagrangian
ristics [5-8]), stability and/or accu-
mall time-steps to integrate along a
and perhaps most efficient [9]—to
nts, obviating the need for the ex-
romise the efficiency of NN algo-
algorithms are also not necessarily
or these purposes, such as the ADT
ed as new elements are added [2].
 search speed and storage require-

 Minev and Ethier [6] suggested a
of pointers to each voxel’s contents
ber of voxels actually intersecting
would reduce the storage require-
sted here, but at the expense of po-
ing to the introduction of a binary
eved by combining digital tree and
e unstructured mesh was generated
ween storage and speed, at the loss

Fig. 6. Isospeed contours and velocity
vectors interpolated onto an oblique
slice through the 1.7M aneurysm
model. Only every other vector is
shown for clarity.

398 M. Khoshniat, G.R. Stuhne, and D.A. Steinman

of the algorithm’s general applicability [10]. For example, although not attempted
here, it might be possible to at least partially align voxel volumes along internal un-
structured element boundaries for the octree-based meshes tested here.

Conclusions

SAM algorithms provide significantly faster geometric searches compared to digital
tree and especially nearest neighbour algorithms. Relative voxel volumes of 5-10 ap-
pear to provide the best trade-off between search speed and storage requirements. Our
novel variant of the SAM algorithm offers 1.5-2× improvements in storage and speed
compared to the conventional SAM algorithm, but does so at the expense of an order-
of-magnitude increase in setup times. We conclude that SAM algorithms are ideally
suited to real-time, software-based interpolation of unstructured field data.

Acknowledgments. This work was supported by a grant from the Natural Sciences &
Engineering Research Council of Canada (RGPIN 249746-02). D.A.S. was supported
by a New Investigator Award from the Heart & Stroke Foundation of Canada. M.K.
was supported by the CIHR Group in Vascular Imaging.

References

�� ������	��
���
�
	�������
���
������	
������	�	�������������������������	��	�����������������
���	��� ������	������������!����������������"�#�$%&'�%$($)�

*� �����
�+�
�
���	��
�+���!����������	�,��	,	���������#!-.'���,��	��������&-�,������	���������
	�,�����	��������	�������������/���+�0����������1�,��&��#�$$�'��(�"�

&�
	������23
���
��������	�
���4���1��	�	������������	�����������	������������������� ������
�����	����/���+�0����������1�,���"�#�$%�'�*&�(*&"�

5� -���	����
�+�
�6����
�
�
�������
���
�7�������
�8�
�9�:��������	�	���� ���	��
���	�������
��;�������	��������������
�%���/�������	���������	�,�8���������
�6�3��.����
��$$$�

<� �����,�	�
�4�7�
�-��	
�1�!���/����������	����������6�,���,��4����3	�����������������	��
��������	����0��	������3����=���	�����/���+�0����������1�,���<�#�$$*'�*&(*)�

)� �	���
�
�-�
�1��	��
�7�8���!����������	��	�>�	�	�������������,��	������������&�-�0��	���
���3����=���	������	�,��������������,�	����7�����������!���������1�,���"%�#�$$$'�&$(
<?�

"� 7������
�4�
�����:	�
���+�
�
�	��
�+���0����	���������	��������3	�,������	,������������������+
7������
� ����"*�#*??�'�&<)(&%?�

%� .�������
���
����	����
�-�!������������	�,�����=���	� ��������	��������3	�,������,������
�����	��������	��� ���	����������+��	������1�,���*5�#*??*'��))("<�

$� @��:�	,��
�-�0�
�6���
�-�!���/�������	����	�����������������	��������	�,���	�,������������
��������	�	����/111�.������	��7������4������*�#�$$)'��*?(�*%�

�?� ���3�
�1�
�
���	��
�/�!�
�A��
����������������	2�����	��������	���:	����������������	�,�	�
�:��������������	����	�����-������ ���	��,����	�����7������4������*�#�$$$'�)&(%&�

	1 	Introduction
	2
	2	Geometric Search Strategies
	2.1	Nearest Neighbour (NN)
	2.2	Alternating Digital Tree (ADT)
	2.3	Structured Auxiliary Mesh (SAM)
	2.4	Structured Auxiliary Mesh with Element Storage (SAMe)

	3	Methods
	4	Results
	Discussion
	Conclusions
	Acknowledgments. This work was supported by a grant from the Natural Sciences & Engineering Research Council of Canada (RGPIN 249746-02). D.A.S. was supported by a New Investigator Award from the Heart & Stroke Foundation of Canada. M.K. was supported by the CIHR Group in Vascular Imaging.
	References

