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Abstract. We combine nonlinear diffusion scale-space and geometric
deformable models for segmenting lesions in MR images of ischemic
stroke patients. Region and boundary information are integrated in a
speed function for robust segmentation with the fast marching level set
method. A confidence-based model of segmentation captures the signif-
icant variability in human segmentation and the ambiguity inherent in
many lesions, and it provides a testbed for a new measure of variance with
sets as random variables. This method offers users a family of segmen-
tations, requires less user input than previous methods, and its volume
estimates effectively match those of doctors’ hand segmentations.

1 Introduction

Treatment for stroke requires almost immediate intervention, and quick, consis-
tent computer segmentations would be useful for evaluating alternative therapies
[1]. Given an MRI of a stroke victim, the primary task is to identify voxels (vol-
ume elements) clinically deemed to be lesion. According to physicians, volume
estimates within 20% of physician manual segmentations are clinically useful.
The primary difficulty is that the segmentation occurs over a noisy, indirect ob-
servation, rather than directly from the generating process (i.e. tissue). Other
difficulties include tissue mixtures, ambiguous boundaries, multi-modal lesion
intensity, and complex shape.

Creating and evaluating automatic methods for segmenting lesions is chal-
lenging for two major reasons. First, the concept of a ground-truth segmentation
is elusive. Different doctors may give substantially different segmentations of the
same lesion; the same doctor on different occasions might produce disparate seg-
mentations; a doctor might not even exhibit a consistent strategy throughout all
slices of an MRI. Ambiguity in a lesion boundary is one cause of this segmenta-
tion variation, while some other lesions are so convoluted that accurate manual
segmentation is prohibitively tedious.
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The second challenge is that lesions themselves vary quite widely. Much of
the finesse in diagnosing tissue as stroke lesion relies upon anatomical knowl-
edge, which can be difficult to incorporate in automatic methods. Some imaging
methods show distinct tissue types differently, requiring an allowance for multi-
ple intensities within a lesion. In other cases, doctors know that stroke does not
stop at cortical boundaries, so even the faintest signal in regions neighboring the
primary affected area are likely to be labeled stroke, whereas in other lesions
a similar drop in intensity might signal a boundary with healthy tissue or an
imaging artifact. The result is that simple rules relying on intensity patterns are
inconsistent across lesions, even on the small dataset explored in this work.

The simplest solution is to find a consistent strategy that gives the least
error. This works reasonably well on average but is unsatisfying on lesions where
there is ambiguity or subtle anatomical knowledge is required. Alternatively,
one might opt for the overhead of image registration and attempt to tie in more
medical domain knowledge in hopes of eliminating the error. We argue, however,
that with minimal additional user interaction, segmentations of these subtleties
can be proposed automatically and confirmed manually.

The intensity nuances found in stroke lesions are well-modeled by the scale-
space theory of computer vision, which facilitates the inspection of an image at
varying levels of detail. For segmenting both complex and regular shapes quite
easily, we employ geometric deformable models, or level sets. These require a
single click to initialize and inflate like balloons that fill to lesion boundaries.
We give a measure of confidence in the classification of each voxel by segmenting
the image at several scales and with several threshold parameters that stop the
inflation of the deformable model at different places.

2 Segmentation Model

2.1 Nonlinear Diffusion Scale-Space

We desire to model the segmentation of lesions in a framework that encapsu-
lates the variation in lesion boundary criteria. Scale-space is a formal method of
blurring an image so that details disappear as the scale increases. Our goal is
to localize lesion boundaries, so we use the semantically meaningful (i.e. edge-
preserving) scale-space provided by nonlinear diffusion [2]. Edges are preserved
and enhanced by encouraging blurring within regions while restricting blurring
between them. The regularized [3] nonlinear isotropic diffusion equation govern-
ing this scale-space evolution is

∂tu = div
(
g

(
|∇uσ|2

)
∇u

)
, (1)

where u (x; t) is the image at scale t, u (x; 0) is the original image, and uσ is u
convolved with a Gaussian of standard deviation σ. We use the diffusivity [4]

g (s) = 1 − exp
(
−3.315 (s/ λ)−4

)
, (2)
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where λ is a contrast parameter so that structures with |∇uσ| > λ are preserved,
and those with |∇uσ| ≤ λ are blurred. Since g (·) > 0, regions of the image slowly
blend together as the scale t increases, thus gradually eradicating edges.

2.2 Fast Marching Level Set Method Speed Function

The implicit nature of the fast marching level set method allows it to effectively
segment lesions of complex shape. A front propagates outward from an initial
point within the lesion at some speed F (x). This front’s arrival time at any
image location is given by T (x), which is defined [5] as the solution to

F |∇T | = 1 . (3)

The process is complete when the speed function prevents the front from reaching
any more points within a reasonable time, and the segmentation is given by
classifying as lesion those voxels that have been reached.

Because F determines the speed of the propagating front at every image loca-
tion, it makes sense to assign F a large value at voxels believed to be part of the
lesion and a small value elsewhere. Two of the best clues we have regarding the
classification of a particular voxel are its intensity and gradient magnitude. In-
tensities consistent with healthy tissue or boundaries indicated by large gradient
magnitude are good clues for where to stop the front. We combine this informa-
tion into a speed function that is a hybrid of region (intensity) and boundary
(gradient) based segmentation strategies.

Diffusion will not always blend a lesion to a uniform region because multi-
modal lesions may have relatively dark areas that blend with the background
first. However, if we have a strict lower bound on lesion intensity, i.e. that of
healthy tissue, we can introduce a threshold β, such that the front slows when it
encounters intensities below the threshold. Such an intensity-based speed func-
tion is given by

H (x) = exp
(

−
(

β

u (x; t)

)a)
. (4)

where u (x; t) is the image intensity at diffusion scale t, and a is a parameter
controlling slope of the speed about the intensity threshold β, which we assume
some confidence in. To reduce the front’s speed at a strong gradient, which
potentially indicates a lesion boundary, we use

G (x) = exp (−b |∇u (x; t)|) , (5)

where b is only a linear parameter controlling the sensitivity to gradient magni-
tude, which we have little confidence in. Our hybrid speed function is then

F (x) = H (x) G (x) = exp
(

−
(

β

u (x; t)

)a

− b |∇u (x; t)|
)

. (6)

This function allows large speeds where the intensity on the front is above
the threshold and there is little boundary evidence but slows when either the
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Fig. 1. Hybrid gradient and intensity speed function (β = 0.4, a = 4, b = 3.5).

intensity drops or a large gradient is encountered. The function approaches zero
rapidly when both events occur (Figure 1). Our hybrid speed function allows for
multi-modal lesions to be segmented correctly by not relying solely on gradient
strength and prevents a front from propagating outside the lesion when there is
no strong boundary.

2.3 Confidence

Different lesions exhibit different intensity patterns and thus often require differ-
ent parameters for correct segmentation; we don’t know a priori what scale t and
intensity threshold β are best for segmenting a particular lesion. We therefore
segment an MR image at several scales and intensity thresholds. In this two-
dimensional space of control parameters, the frequency of a voxel being labeled
lesion by the algorithm will be regarded as a one-sided measure of confidence
in the classification of that voxel. As the scale or the threshold is increased,
only the most persistent or brightest (darkest) areas of the lesion (background)
are included (excluded) across segmentations. Thus, the more often a voxel is
included, the more certain the algorithm, without prior anatomical knowledge,
can be about the results.

The segmentation process begins when a user selects a seed point inside the
lesion and an exterior point somewhere in healthy tissue, giving a lower bound
on lesion intensity (Figure 2). While the locations of these points remain fixed
throughout the segmentation process, the intensities at the points vary with
scale. The intensity threshold is implicitly varied between the intensities of the
given interior and exterior points. Let β (0; t) be the intensity of the exterior
point at scale t and β (1; t) be the intensity of the interior seed point at scale t.
The explicit segmentation parameter we vary is p ∈ [0, 1] and we use

β (p; t) := β (0; t) + p (β (1; t) − β (0; t)) (7)
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(a) (b) (c) (d)

Fig. 2. Segmentation Process. (a) Interior and exterior points selected. (b) Segmenta-
tion over several scales (t = 37, 221, 493, 4447 shown) and thresholds. (c) Segmentation
inclusion frequency. (d) Contour for confidence c = 0.71, which most closely matches
doctors’ volumes.

for 0 < p < 1 as the speed function intensity threshold parameter. As p ap-
proaches 1, the threshold increases, making segmentations more conservative.
For the most conservative possible segmentation, the interior seed point should
lie in the lesion’s brightest area.

If T and P are the (finite) sets of scales and threshold parameters, respec-
tively, then let a particular segmentation be S (t, p) for t ∈ T and p ∈ P. The
relative frequency of a voxel’s inclusion in the lesion is

φ (x) =
1

|T | |P|
∑
t∈T

∑
p∈P

χS(t,p) (x) , (8)

which is the total number of times a voxel x appears in the segmentations divided
by the number of segmentations. We define a confidence segmentation to be the
set of voxels above some minimum relative frequency 0 ≤ c ≤ 1,

C (c) = {x | φ (x) ≥ c} . (9)

3 Experiments

Experiments were performed on 7 MR images of various modes and voxel di-
mensions from 5 patients. The volumes from two hand segmentations by two
physicians are reported for 5 of these images in [1]. For 3 additional images, the
segmentations themselves were obtained, thus allowing a more careful evaluation
of automatic segmentations by directly comparing voxel classifications.

Three metrics are used to evaluate the results. As in [1], we compare the
volumes of automatic and physician segmentations using the relative error

Error =100 ∗ VolumeEstimate − VolumePhysician

VolumePhysician
. (10)



Nonlinear Diffusion Scale-Space 501

Table 1. For doctors 1 and 2, the Individual column gives the minimum volume
error on each image and the parameters where it occurs; the Total column gives each
image’s error at the parameters where minimum total absolute volume error occurred
(t = 6634, p = 0.95). Maximum F-measures and corresponding volume error for each
image are given for doctor 3.

Doctor 1 Doctor 2 Doctor 3
Individual Total Individual Total Individual

Img %Err Scale Thresh %Err %Err Scale Thresh %Err F-msr %Err Scale Thresh
2 -0.1 1636 0.95 1.8 0.0 40135 0.95 -3.9 84.3 -3.9 1998 0.45

3P - - - - - - - - 88.1 -10.9 330 0.35
3Q - - - - - - - - 88.1 -10.8 3641 0.15
3R 0.0 330 0.95 -15.3 0.0 1998 0.85 -6.6 - - - -
4 0.7 8103 0.95 1.6 0.4 8103 0.85 -6.2 - - - -
5 0.0 270 0.75 -0.5 -0.4 45 0.75 7.5 - - - -
6 0.0 55 0.95 -4.6 0.5 4447 0.75 -6.0 - - - -

However, similar volumes might correspond to different segmentations (sets of
voxels). Where possible, we measure the precision P (percentage of included
voxels that are correct) and recall R (percentage of correct voxels that are in-
cluded) of the estimate with respect to a physician segmentation and consider
their harmonic mean, F = 2PR/ (P + R), known as the F-measure.

To test parameter sensitivity, some measure of segmentation variance is
needed, but the usual variance of volumes is susceptible to the same problem
mentioned above. The variance of a numerical sample y1, . . . , yn may be written
s2 = 1

2n(n−1)

∑n
i=1

∑n
j=1 (yi − yj)

2. Since our segmentation sample S1, . . . , Sn

consists of sets rather than numbers, we propose to use the analogous measure
of “set variance”

s2
� :=

1
2n (n − 1)

n∑
i=1

n∑
j=1

|Si � Sj |2 , (11)

where Si � Sj is the symmetric difference (Si ∪ Sj) \ (Si ∩ Sj). When sets in
a sample all have nearly the same volume but contain distinct elements, the
usual standard deviation of volume will be misleadingly small, while (11) will
be large. As an example, for n disjoint segmentations each of volume v, s2 = 0
while s2

� = 2n
n−1v2. It can be shown that s2

� ≥ s2 and s2
� = s2 iff either Si ⊆ Sj

or Sj ⊆ Si ∀i, j [6].
The results of Table 1 show that it is possible to achieve almost zero volume

error for each image and each physician at some parameter setting. If we fix
the scale and threshold parameters to the pair that minimizes the total absolute
error over both of the first two doctors’ segmentations, the results are still almost
entirely within a 10% error. Table 1 also gives the best F-measure on images with
physician segmentations. For these images, the best automatic segmentations are
similar in appearance to those given by physicians. All volume differences are
well within our clinically useful bounds of 20%.
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Table 2. Left: Segmentation volumes (in mm3) and the percentage error of the mean
using several initial points. Right: Individual errors at the confidence (c = 0.53)
with zero mean error (standard deviation 22.0%), and confidence values where the
percentage error is minimum for each individual image with corresponding error.

Varying β Controlled β Zero Mean Individual
Mean MeanImg Mean Sd Set Sd
%Err

Mean Sd Set Sd
%Err

%Err Conf %Err

2 3710 922 922 8.6 3420 4 4 0.11 8.6 0.67 -0.1
3P 28534 993 993 -12.2 28948 37 37 -10.96 -30.1 0.02 -2.2
3Q 27578 111 111 -10.5 27502 40 40 -10.69 -23.6 0.05 0.6
3R 21701 5882 5882 -7.9 23437 82 84 -0.50 8.7 0.71 0.2
4 11164 1833 1833 12.1 10030 8 8 0.68 35.2 0.91 -0.2
5 10652 495 495 5.1 10132 24 24 0.01 - 4.9 0.45 -0.1
6 2880 1031 1031 -16.6 3458 4 4 0.16 5.5 0.76 -0.1
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Fig. 3. Mean volume error for all images versus confidence.

We tested the sensitivity of the segmentation process to the location and
intensity of the interior point (Table 2) by using several seed points chosen at
random from a conservative segmentation. Each image was segmented with the
individual parameters from Table 1 for doctor 1 or doctor 3. While the error
is within clinically useful bounds on average, when the seed point comes from
darker regions of multi-modal lesions but p remains fixed, the threshold param-
eter β changes, which alters the segmentation and increases standard deviation.
By holding β constant, we see that nearly all the variation is due to inten-
sity, rather than location. There is little difference between the usual standard
deviation over volumes and our proposed definition over sets because most seg-
mentations are nested, indicating the sets vary only as much as the volumes.
Accuracy is sensitive to the intensity threshold, which is difficult to control since
it is derived from user input. We therefore use the confidence measure to consider
several thresholds.
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Figure 3 confirms the intuition that over-segmentation occurs when low con-
fidence is required and under-segmentation occurs when high confidence is re-
quired. Therefore, we might set a default confidence requirement at the zero
crossing c = 0.53, where the average error over images is zero. That the confi-
dence giving zero mean error is almost exactly one half is intuitively appealing.
Additionally, the standard deviation of volume error is 22.0%, barely above the
error deemed clinically useful by physicians.

Although they average to zero, the individual errors in Table 2 indicate that
a single confidence level for all lesions might not be the best option, especially
for the variety of lesions expected to occur in practice. For example, the large
negative errors on images 3P and 3Q at c = 0.53 are because both contain
ambiguous regions that doctors classified as lesion. These areas of uncertainty
are only included at lower confidence levels, and similar uncertain structures
will always be eliminated at the “average” confidence level. Conversely, image
4 contains a mix of healthy and lesion tissue that doctors excluded from their
lesion segmentations, while the confidence segmentation only excludes the mix
and isolates the correct region at higher confidence levels.

4 Conclusions

We have introduced a model for segmenting MR lesion images that requires lit-
tle user input. Clinically useful volumes are achieved on most lesions even when
all parameters are fixed, but some types of lesions do not lend themselves to
accurate segmentation with a single parameter setting. Rather than ignoring
these anatomical nuances, we allow a user to choose a segmentation correspond-
ing to the confidence level he or she feels is the best representative of actual
lesion boundaries, giving more precise volumes. This requires still less user in-
teraction than [1], which implicitly required the user to choose the scale of the
segmentation by drawing an initial contour.

The statistical analysis of random sets is a relatively unexplored area. We
presented a new direction for thinking about the variability in segmentations by
proposing a measure of set variance that is near the value of the usual variance
of volume measurements when the segmentations are similar yet is much larger
when they are dissimilar.
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