Abstract
Given models for healthy brains, tumor segmentation can be seen as a process of detecting abnormalities or outliers that are present with certain image intensity and geometric properties. In this paper, we propose a method that segments brain tumor and edema in two stages. We first detect intensity outliers using robust estimation of the location and dispersion of the normal brain tissue intensity clusters. We then apply geometric and spatial constraints to the detected abnormalities or outliers. Previously published tumor segmentation methods generally rely on the intensity enhancement in the T1-weighted image that appear with the gadolinium contrast agent, on strictly uniform intensity patterns and most often on user initialization of the segmentation. To our knowledge, none of the methods integrated the detection of edema in addition to tumor as a combined approach, although knowledge of the extent of edema is critical for planning and treatment. Our method relies on the information provided by the (non-enhancing) T1 and T2 image channels, the use of a registered probabilistic brain atlas as a spatial prior, and the use of a shape prior for the tumor/edema region. The result is an efficient, automatic segmentation method that defines both, tumor and edema.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Bullitt, E., Gerig, G., Pizer, S.M., Aylward, S.R.: Measuring tortuosity of the intracerebral vasculature from MRA images. IEEE Transactions on Medical Imaging (2003) (in print), available at http://casilab.med.unc.edu
Kaus, M.R., Warfield, S.K., Nabavi, A., Chatzidakis, E., Black, P.M., Jolesz, F.A., Kikinis, R.: Segmentation of meningiomas and low grade gliomas in MRI. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1–10. Springer, Heidelberg (1999)
Moon, N., Bullitt, E., Van Leemput, K., Gerig, G.: Automatic brain and tumor segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 372–379. Springer, Heidelberg (2002)
Gering, D.T., Grimson, W.E.L., Kikinis, R.: Recognizing deviations from normalcy for brain tumor segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 388–395. Springer, Heidelberg (2002)
Evans, A.C., Collins, D.L., Mills, S.R., Brown, E.D., Kelly, R.L., Peters, T.M.: 3D statistical neuroanatomical models from 305 MRI volumes. In: Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 1813–1817 (1993)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16, 187–198 (1997)
Rosseauw, P.J., Van Drissen, K.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41, 212–223 (1999)
Cocosco, C.A., Zijdenbos, A.P., Evans, A.C.: Automatic generation of training data for brain tissue classification from mri. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 516–523. Springer, Heidelberg (2002)
Duda, R.O., Hart, P.E., Stork, D.: Pattern Classification, 2nd edn. Wiley, Chichester (2001)
Wells, W.M., Kikinis, R., Grimson, W.E.L., Jolesz, F.: Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging 15, 429–442 (1996)
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated modelbased bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging 18, 885–896 (1999)
Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13, 856–876 (2001)
Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 224–227 (1979)
Ho, S., Bullitt, E., Gerig, G.: Level set evolution with region competition: Automatic 3-D segmentation of brain tumors. In: Katsuri, R., Laurendeau, D., Suen, C. (eds.) Proc. 16th International Conference on Pattern Recognition, pp. 532–535. IEEE Computer Society, Los Alamitos (2002)
Gerig, G., Jomier, M., Chakos, M.: VALMET: a new validation tool for assessing and improving 3D object segmentation. In: Niessen, W., Viergever, M. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 516–523. Springer, New York (2001)
Jaccard, P.: The distribution of flora in the alpine zone. New Phytologist 11, 37–50 (1912)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Prastawa, M., Bullitt, E., Ho, S., Gerig, G. (2003). Robust Estimation for Brain Tumor Segmentation. In: Ellis, R.E., Peters, T.M. (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. MICCAI 2003. Lecture Notes in Computer Science, vol 2879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39903-2_65
Download citation
DOI: https://doi.org/10.1007/978-3-540-39903-2_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20464-0
Online ISBN: 978-3-540-39903-2
eBook Packages: Springer Book Archive