Abstract
Knowledge of brain aneurysm dimensions is essential in minimally invasive surgical interventions using Guglielmi Detachable Coils. These parameters are obtained in clinical routine using 2D maximum intensity projection images. Automated quantification of the three dimensional structure of aneurysms directly from the 3D data set may be used to provide accurate and objective measurements of the clinically relevant parameters. In this paper we present an algorithm devised for the segmentation of brain aneurysms based on implicit deformable models combined with non-parametric region-based information. This work also presents the evaluation of the method in a clinical data base of 39 cases.
Chapter PDF
Similar content being viewed by others
Keywords
- Maximum Intensity Projection Image
- Vessel Segmentation
- Neck Diameter
- Guglielmi Detachable Coil
- Geodesic Active Contour
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Bland, J.M., Altman, D.G.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8476, 307–310 (1986)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22 (1), 61–79 (1997)
Debrun, G.M., Aletich, V.A., Kehrli, P., Misra, M., Ausman, J.I., Charbel, F., Shownkeen, H.: Aneurysm geometry: an important criterion in selecting patients for Guglielmi detachable coiling. Neuro. Med. Chir. 38, 1–20 (1998)
Deschamps, T.: Extraction de courbes et surfaces par méthodes de chemins minimaux et ensembles de niveaux. Applications en imagerie medicale 3D, Ph.D. Thesis, University of Paris-Dauphine, France (December 2001)
Frangi, A.F., Niessen, W.J., Nederkoorn, P.D., Bakker, J., Mali, W.P.T.M., Viergever, M.A.: Quantitative analysis of vessel morphology from 3D MR angiograms: in vitro and in vivo results. Mag. Res. in Med. 45(2), 311–322 (2001)
Guglielmi, G., Vinuela, F., Spetka, I., Macellari, V.: Electrothrombosis of saccular aneurysms via endovascular approach. Neruosurg. 75(1), 1–7 (1991)
Hernandez, M., Sapiro, G., Frangi, A.F.: Pre-clinical evaluation of implicit deformable models for three-dimensional segmentation of brain aneurysms in CTA. In: Proceedings of SPIE Medical Imaging, Image Processing, vol. 5032, pp. 1264–1274 (2003)
Jain, A.K., Chandrasekaran, B.: Dimensionality and sample size considerations in pattern recognition practice. Handbook of Statistics 2, 835–855 (1982)
Lorigo, L.M., Faugeras, O.D., Grimson, W.E.L., Keriven, R., Kikinis, R., Nabavi, A., Westin, C.F.: Curves: Curve evolution for vessel segmentation. Med. Im. Analysis 5(3), 195–206 (2001)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)
Paragios, N.: Geodesic active regions and level set methods: Contributions and applications in artificial vision. Ph.D. Thesis, University of Nice Sophia-Antipolis, France (2000)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Patt. Anal. Machine Intel. 12(7), 629–639 (1990)
Raaymakers, T.W., Rinkel, G.J., Limburg, M., Algra, A.: Mortality and morbidity of surgery for unruptured intracranial aneurysms: a meta-analysis. Stroke 29(8), 1531–1538 (1998)
Subasic, M., Loncaric, S., Sorantin, E.: 3-D deformable model segmentation of abdominal aneurysm. In: Proceedings of SPIE Medical Imaging, San Diego, USA (2001)
Teo, P.C., Sapiro, G., Wandell, B.: Segmenting cortical gray matter for functional MRI visualization. In: 6th Int. Conf. Comp. Vis, pp. 292–297 (January 1998)
Yezzi, A., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and trimodal imagery. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision 1999, vol. 2, pp. 898–903 (September 1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hernandez, M., Frangi, A.F., Sapiro, G. (2003). Three-Dimensional Segmentation of Brain Aneurysms in CTA Using Non-parametric Region-Based Information and Implicit Deformable Models: Method and Evaluation. In: Ellis, R.E., Peters, T.M. (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. MICCAI 2003. Lecture Notes in Computer Science, vol 2879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39903-2_73
Download citation
DOI: https://doi.org/10.1007/978-3-540-39903-2_73
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20464-0
Online ISBN: 978-3-540-39903-2
eBook Packages: Springer Book Archive