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Abstract. Hybrid frameworks combining region-based and boundary-
based segmentation methods have been used in 3D medical image seg-
mentation applications. In this paper we propose a hybrid 3D segmen-
tation framework which combines Gibbs models, marching cubes and
deformable models. We use Gibbs models to create 3D binary masks of
the object. Then we use the marching cubes method to initialize a de-
formable model based on the mask. The deformable model will fit to the
object surface driven by the gradient information in the original image.
The deformation result will then be used to update the parameters of
Gibbs models. These methods will work recursively to achieve a final
segmentation. By using the marching cubes method, we succeed in im-
proving the accurancy and efficiency of 3D segmentation. We validate
our method by comparing the segmentation result with expert manual
segmentation, the results show that high quality segmentation can be
achieved with computational efficiency.

1 Introduction

Computerized segmentation has been playing an increasingly important role in
medical image analysis applications such as object reconstruction, motion cap-
ture, medical animation, remote operation, and myocardium dynamic analysis.
Although modern imaging modalities provide exquisite imagery of the anatomy,
precise segmentation of medical images continues to pose a challenge.

Classical segmentation methods such as boundary based methods [2] [3] and
region based methods [1] [6] may lead to local minima during segmentation since
they cannot combine the regional information and the boundary information of
the object. In [4] [15], hybrid segmentation frameworks have been developed
to improve the segmentation results by combining the strength of each of these
two methods. In a hybrid framework, region-based methods and boundary-based
methods work recursively to push each other out of local minima during segmen-
tation. However, in those hybrid frameworks, those two segmentation methods
are just loosely coupled: the boundary information provided by boundary-based
methods cannot be used by region-based methods, which makes it difficult for
region-based methods to get out of local minima.
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For the purpose of diagnosis and surgery planning, we need accurate segmen-
tation methods for both 3D volumes and 2D slices. In [16], a level set method
has been used to get 3D segmentation for brains. However, the segmentation
process takes a long time (over 4 hours for one volume). In [14] a 3D model de-
forms to fit the object surface driven by the ”balloon” force. The model expands
like a balloon until its surface confronts the object surface. One weakness of the
method is that the model cannot easily fit into object surface features such as
concavities and convexities.

In this paper we extend our methodology in [7] into a 3D segmentation
method by integrating Gibbs models [6], marching cubes[17] [18] and deformable
models [11] into a hybrid framework.

Unlike hybrid frameworks in [4] [15], we use the deformable model segmenta-
tion to update the boundary parameters of the Gibbs prior model, which makes
our method have a consistent performance without a training session. By using
the marching cubes method to initialize deformable models close to the object
surface, we skip the balloon-fitting process in [14]. This helps to greatly reduce
the segmentation time for big 3D volumes and enables the deformable model fit
into concavities and convexities.

To demonstrate the utility of the method in clinical applications, we apply
the hybrid framework to brain (2 without lesion, 15 with lesion) and tumor
segmentation in MR images. Our segmentation method is validated based on
manual segmentation by experts. The results show over 90% similarity between
the result of our hybrid method and the ground truth.

The paper is organized as follows: In section 2 we describe our methodology.
In section 3, experiment results are given to demonstrate how to use our seg-
mentation method. In section 4 we present validation results. In section 5 we
give our conclusion.

2 Methodology

In this section we describe four internal modules of our hybrid segmentation
framework and how they work sequentially to get the global segmentation result.

2.1 High Order Gibbs Prior Models

In [7] we proposed a high order Gibbs prior model that can use boundary infor-
mation explicitly as well as the region information.

Using the Equivalence Theorem proved by Hammersley and Clifford [9] and
the Bayesian framework, the segmentation problem can be degraded to the min-
imization of an energy function.

The energy function of our Gibbs prior model has the following form:

Hprior(X) = H1(X) + H2(X) (1)

where H1(X) models the piecewise pixel homogeneity statistics, H2(X) models
the continuity of the boundary.
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One important advantage of our high order Gibbs Prior model over other
region-based methods is that it uses the boundary information of the object as
well as the regional information. H2(X) has the following form:

H2(X) = ϑ2

∑
s∈X

N∑
i=1

Wi(s) (2)

where s is a pixel, ϑ2 is the weight term for the boundary continuity, N is
the number of local configurations that may lie on the boundaries. Wi(s) are
potential functions defined on 3 by 3 clique with s at center.

Assuming we assign ”1” to pixels inside the object and ”0” to pixels in
the background, for a clique contains 3 by 3 pixels, there are altogether 29

possible (1, 0) configurations. We group these configurations into six classes of
cliques and assign different values to potential function of each class of clique. We
assign smaller values to clique configures that locate at smooth and continuous
boundaries. Therefore, when we minimize H2(X), the pixels in the image will
alter their gray values to form clique configurations that have been assigned a
low value. These alternations will lead to smooth and continuous boundaries in
the resulting image. For more details about the Gibbs prior model, please refer
to [7] [8].

To save time, we only use 2D Gibbs models in our framework. For 3D volumes,
we apply 2D Gibbs models onto each slice in the volume to get a series of 2D
binary masks of the object region. We combine these 2D binary masks to form
a 3D binary mask as the input of the marching cubes method.

2.2 Marching Cubes

We use the discretized marching cubes method proposed by Montani in [18] to
build a 3D mesh based on segmentation results of Gibbs models.

We construct the deformable surface by scanning through all the voxels in
the 3D volume. Each voxel is a cube created from 8 pixels, four each from a slice.
We give an index to the 13 potential locations for the nodes on the deformable
model surface in this cube and define 13 possible plane incidences onto which
elements of the deformable model can lie.

There are altogether 256 possible on-off combinations of the cube vertex.
However, we only need to consider the 16 final cube configurations according
to [18]. Those 256 vertex on-off combinations can be converted into one of the
16 configurations by a finite number of inverse, flip, and rotation operations
without causing any topological ambiguity. We record the necessary operation
sequence for each one of the 256 vertex combinations to convert to one of the
final 16 configurations into a lookup table and the final configuration of each
combination into another lookup table.

The size of these two lookup tables are both 256 bytes. They are small enough
to be loaded in the memory before the element creation process begins

After initializing the lookup tables, we scan through the whole 3D image
volume. We create elements in each voxel based on the final configuration of the
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current vertex combination according to second lookup table. Then we decide
the coordination of nodes on the deformable surface by transferring the element
using transfer sequence in the first lookup table. Since both lookup tables have
already been loaded into the memory, the element construction process runs
very fast (shown in table 2). Finally we combine elements together to form a 3D
deformable mesh.

2.3 Deformable Models

We use Gibbs models and the marching cubes method to initialize a deformable
surface that is close to the object surface. We write the deformable model dy-
namics in the form of the first order Lagrangian method:

ḋ + Kd = fext (3)

where ḋ = ∂X
∂t . K is the stiffness matrix. fext is the external force which is a

combination of a second order derivative gradient vector flow and balloon force.

2.4 Gibbs Model Reparameterization

In the first iteration of the recursive hybrid framework, the parameters of Gibbs
prior models are set to default values (please refer to section 2.1). To improve the
segmentation result for Gibbs prior models, we update their parameters before
restarting them in the following iterations.

Besides updating regional parameters such as the intensity and the standard
deviation of the object, we also update the potential of the local configuration
that may lead to different boundary conditions.

The clique potential of the higher order Gibbs Prior model should be pro-
portional to the number of appearance of each type of cliques in the segmented
binary image. For each clique, its potential is decided by:

Ih(w) = γ ln(
r(th(w))

#r(th(w))
+ 1) (4)

where th(w) is the clique type for the clique with pixel h at the center. r(th(w))
is the number of occurrence of this clique type in the binary image. #r(th(w))
is the number of the configurations in the clique type.

Updated parameters represent a more accurate prior distribution than those
of default values, which improves the performance of Gibbs models in the fol-
lowing iterations of the hybrid framework.

2.5 Recursive Hybrid Framework

Figure 1 shows internal modules and the data flow of 3D segmentation proce-
dures. Gibbs models, the marching cubes method and the deformable model
work recursively to get a global solution to the segmentation problem.
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Fig. 1. Flow-Chart for 3D-segmentation hybrid framework.

3 Experiments and Results

We illustrate our hybrid segmentation framework by applying it onto a 3D MR
image volume of a brain with a tumor region (Figure 2(a) shows one slice of
the volume). The image volume size is 256 by 256 by 32 pixels. 32 2D Gibbs
Prior models are used to create a 3D binary mask for the tumor region. We
use the marching cube method to create a surface for the deformable model
to begin with. The deformable model is driven by a second derivative gradient
vector flow. The segmentation process stops after two iterations. Figure 2(b)
shows the segmentation result of the Gibbs model applied on the slice using de-
fault parameter values. Figure 2(c) shows the segmentation result of the Gibbs
model using parameter values updated based on the segmentation result of de-
formable model. In Figure 2(d) we show the final segmentation result of the
hybrid framework. For quality evaluation, we overlay the segmentation result
onto the original image as in Figure 2(e), the dark region in the image is the
location of final our segmentation. We also show the initial deformable surface
constructed using marching cube method in Figure 2(f), and the segmentation
result after the deformation in Figure 2(g), 2(h). Notice that the segmentation
result of the Gibbs model is improved by using updated parameters (Figure 2(b)
2(c)). It is evident that our hybrid framework is capable of getting the segmen-
tation process out of local minima. The fact that in Figure 2(g) and 2(h) the
deformable model fits well at concavities and convexities proves that our hybrid
framework has a good performance in segmenting complicate object surfaces.
The total segmentation time is about 12 minutes for 2 iterations, which is much
shorter than the method in [16].

We also run our method to segment the whole brain (white matter plus gray
matter, provided by Peter Ratiu’s group at Harvard University). The size of
these MR volumes are 256 by 256 by 124 pixels. The processing time for one
segmentation iteration is about 10 minutes. We show 3D segmentation results
of 3 volumes and the corresponding intersections of those segmentation results
on coronal planes in figure 3 and figure 4. These experiments are done on a P4
2GHz PC with 1G memory. The operating system is WinXP.
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Fig. 2. Segmentation of a tumor in the brain from MR image, a. the original image;
b, c. the Gibbs model segmentation result in the first and second iterations; d. the
final segmentation result of the hybrid framework; e. the segmentation result overlays
upon the original image; f. the initial deformable surface; g, h. 2 views of the final
segmentation result in 3D

Fig. 3. Brain segmentation results. There are tumor regions on the brain surface in a)
and c) and have been removed during segmentation

Fig. 4. Corresponding intersections of segmentation results in Figure 3) on coronal
planes, the white lines are the final locations of deformable models
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4 Validation

We use the framework proposed by Chalana et al in [13] and Udupa in [12] for
quantitative validation.

We compute the false negative volume fraction (FNVF), false positive vol-
ume fraction (FPVF) and positive volume fraction (TPVF) using experimental
results and manual segmentations by experts to evaluate the validity of our seg-
mentation framework quantitatively. Validation results based on segmentation
of 10 brain tumor data are shown in table 1.

All the results are in percentages. Hybrid segmentation results (in the third
row) have a higher TPVF and lower FPVF than those of Gibbs prior models
or deformable models alone, which shows the superiority of our hybrid method.
In addition, the segmentation results of the Gibbs models (in the first and forth
row) improve after using updated parameters, which proves that our method is
capable of getting out of local minima when there is limited prior information
available.

We also record the deformation time of some experiments to compare the
performance of our method on different subjects. The results are in table 2.

FNVF FPVF TPVF

Gibbs Model (default parameters) 8.7 % 5.5% 91.3%

Deformable Model 5.9% 6.5% 95.1%

Gibbs Model plus Deformable Model 2.8% 5.6% 97.2%

Gibbs Model (updated parameters) 7.1% 5.1% 93.4%

tumor brain jaw heart

Initialization 1 second 1 second 3 seconds 1 second

Construct Gradient Map 3 seconds 4 seconds 11 seconds 1 second

Construct Mesh 2 seconds 5 seconds 13 seconds 1 second

Deformable Fitting 25 seconds 71 seconds 75 seconds 6 seconds

5 Conclusion

This paper has presented a 3D hybrid segmentation framework with high ac-
curancy and efficiency. The Gibbs model and the deformable model are better
integrated by the use of the marching cubes method and the reparameteriza-
tion module. The method does not need a training session and has a strong
performance in segmenting complicate objects in 3D image volumes with low
SNR.
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Table 1. Quantitative validation results.

Table 2. Deformable fitting time for some experiments. The tumor data size is 256 by
256 by 40. The brain data size is 256 by 256 by 53. The jaw data size is 256 by 256 by
102. The heart data size is 256 by 256 by 11.
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