Abstract
Hybrid frameworks combining region-based and boundary-based segmentation methods have been used in 3D medical image segmentation applications. In this paper we propose a hybrid 3D segmentation framework which combines Gibbs models, marching cubes and deformable models. We use Gibbs models to create 3D binary masks of the object. Then we use the marching cubes method to initialize a deformable model based on the mask. The deformable model will fit to the object surface driven by the gradient information in the original image. The deformation result will then be used to update the parameters of Gibbs models. These methods will work recursively to achieve a final segmentation. By using the marching cubes method, we succeed in improving the accurancy and efficiency of 3D segmentation. We validate our method by comparing the segmentation result with expert manual segmentation, the results show that high quality segmentation can be achieved with computational efficiency.
Chapter PDF
Similar content being viewed by others
References
Ballard, D.H., Brown, C.M.: Computer vision. Prentice-Hall, Englewood Cliffs (1982)
Kass, M., Witkin, A., Trerzopoulos, D.: Snakes: Activecontour models. Intl. J. of Computer Vision 1(4), 321–331 (1988)
Worring, M., Smeulders, A.W.M., Staib, L.H., Duncan, J.S.: Parameterized feasible boundaries in gradient vector fields. Computer Vision and Image Understanding 63(1), 135–144 (1996)
Jones, T.N., Metaxas, D.N.: Automated 3D segmentation using deformable models and fuzzy affinity. In: Duncan, J.S., Gindi, G. (eds.) IPMI 1997. LNCS, vol. 1230, pp. 113–126. Springer, Heidelberg (1997)
Chan,M.T., Herman, G.T., Levitan. E.: A Bayesian Approach to PET Reconstruction Using Image-Modeling Gibbs Prior. IEEE Transaction on Nuclear Science 44(3) (June 1997)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)
Chen, T., Metaxas, D.: Image Segmentation based on the Integration of Markov Random Fields and Deformable models. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 256–265. Springer, Heidelberg (2000)
Winkler, G.: Image Analysis, random Fields and Dynamic Monte Carlo Methods. Springer, Heidelberg (1995)
Hammersley, J.M., Clifford, P.: Markov fields on finite graphs and lattices. Preprint University of California, Berkeley
Xu, C., Pham, D.L., Prince, J.L.: Medical Image Segmentation Using Deformable Models, Handbook of Medical Imaging. In: Fitzpatrick, J.M., Sonka, M. (eds.) Medical Image Processing and Analysis, May 2000, vol. 2, pp. 129–174. SPIE Press, San Jose (2000)
Metaxas, D.N.: Physics-Based Deformable Models: Application to Computer Vision. Graphics and Medical Imaging (1996)
Udupa, J.K., LeBlanc, V.R., Schmidt, H., Imielinska, C., Saha, P.K., Grevera, G.J., Zhuge, Y., Currie, L.M., Monholt, P., Jin, Y.: A Methology for Evaluating Image Segmentation Algorithms. In: Proceedingss of SPIE: Medical Imaging, San Diego, CA, vol. 4684, pp. 266–277 (2002)
Chalana, V., Kim, Y.: A Methodology for Evaluation of Boundary Detection Algorithms on Medical Images. IEEE Transaction on Medical Imaging 16, 642–652 (1997)
Cohen, L.D., Cohen, I.: Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images. IEEE Transaction on Pattern Analysis and Machine Intelligence 15(11), 1131–1147
Chakraborty, A., Duncan, J.S.: Integration of Boundary Finding and Region-based Segmentation Using Game Theory. In: Information Processing in Medical Imaging: Proceedings of the 14th International Conference (IPMI 1995), Ile de Berder, France (June 1995)
Xu, C., Pham, D.L., Rettmann, M.E., Yu, D.N., Prince, J.L.: Reconstruction of the Human Cerebral Cortex from Magnetic Resonance Images. IEEE Transactions on Medical Imaging 18(6), 467–480 (1999)
Lorenson, W.E., Cline, H.E.: Marching Cubes: A High-resolution 3D Surface Construction Algorithm. In: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pp. 163–169
Montani, C., Scateni, R., Scopigno, R.: Discretized Marching Cubes. In: Proceedings of the Visualization 1994 Congress, pp. 281–287 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, T., Metaxas, D. (2003). Gibbs Prior Models, Marching Cubes, and Deformable Models: A Hybrid Framework for 3D Medical Image Segmentation. In: Ellis, R.E., Peters, T.M. (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. MICCAI 2003. Lecture Notes in Computer Science, vol 2879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39903-2_86
Download citation
DOI: https://doi.org/10.1007/978-3-540-39903-2_86
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20464-0
Online ISBN: 978-3-540-39903-2
eBook Packages: Springer Book Archive