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Abstract. In this work we employ computer-vision techniques to detect natural
biological symmetries in breast MR scans. Currently, breast MR images are as-
sessed in terms of the kinetics and location of uptake of Gd-DTPA. However,
mammographic interpretation often uses symmetry between left and right
breasts to indicate the site of potential tumour masses but has not been used in
breast MRI. In this study, we present such a method for characterizing breast
symmetry based on three objective measures of similarity including multireso-
lution non-orthogonal wavelet representation, three-dimensional intensity dis-
tributions and co-occurrence matrices. Statistical feature distributions that are
invariant to feature localization are computed for each of the similarity metrics.
These distributions are later compared against each other to account for per-
ceptual similarity. Studies based on 51 normal MRI scans of randomly selected
patients showed that the sensitivity of symmetry detection rate approached
94%. The symmetry analysis procedure presented in this paper can be applied
as an aid in detecting breast tissue changes arising from disease.

1 Introduction

Symmetry between breasts has been used for many years in X-ray mammography to
aid in the detection of disease. Typically, suspicious areas in one breast are compared,
based on human visual perception, with the same area in the opposite breast and any
differences may be reflective of disease processes. However, the use of symmetry in
mammography is fundamentally limited by the fact that mammography is a 2D pro-
jection imaging method. Alternatively, MRI breast imaging offers several advantages,
as it is a 3D imaging method that exhibits very high contrast between normal breast
tissue entities. Currently, breast MRI is based on the use of Gd-DTPA enhancement
reflective of tumour angiogenesis but virtually no use is made of breast symmetry in
image interpretation.

In this work, we explore the question of symmetry between a patient’s left and right
breast in three-dimensional MRI scans. The purpose of this study is to verify that
symmetry, in terms of volume, texture or structure, could be demonstrated in 3D
breast MRI scans. Another objective is to develop a set of similarity metrics that can
be used for longitudinal studies and for computer aided tracking of changes in breast
tissue.

The research literature contains a number of studies that deal with breast symmetry
analysis in the context of mammography. However, the question of breast symmetry
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analysis in MRI has not yet been addressed. There are several unique issues to breast
MRI that differentiate this problem, as follows. Standard mammography compounds,
by means of projection, an entire breast volume into one 2D plane. Conversely, MRI
is a three-dimensional imaging modality that provides a true rendering of selected
breast planes. Symmetry analysis must therefore be extended to capture symmetry
properties over a range of imaged MRI slices. Further, due to imaging coil properties,
MR images vary in intensity from one slice to the next and also between bilateral
breasts imaged simultaneously.

The common approach to mammogram breast symmetry analysis involves co-
registration of the two breasts followed by bilateral subtraction. Yin et al presented a
method for automated analysis of bilateral mammograms [1]. Their method uses the
anterior portions of the breast border, together with the nipple as landmarks for least
square matching registration followed by nonlinear bilateral subtraction. Sallam and
Bowyer performed analysis of bilateral mammograms by using registration followed
by subtraction [2]. Registration was carried out using steerable filters, which are in-
variant to rotation and shift. Vujovic and Brazkovic describe a method for automatic
extraction of registration landmarks using crossings of horizontal and vertical struc-
tures [3]. Their method is used to compare mammograms of the same breast taken at
different times.

Registration of the same breast imaged at different times can be carried out with
relative effectiveness. However, this approach may encounter problems when used for
bilateral symmetry analysis for several reasons, as follows. Breasts have natural
asymmetries in terms of size, shape and structure that make bilateral co-registration
especially challenging. In addition, finding quality registration landmarks can often
prove very difficult.

Fig. 1. Left and right breast MRI scans of the same patient appear similar by visual observation.
However, standard image comparison methods would perform poorly in this case. Methods that
take into account the structure and texture must be therefore applied.

2 Method

To assess breast symmetry, we employed objective similarity measures that are based
on theoretical models for image comparison. In order to effectively compare three-
dimensional MRI breast scans, effective feature extraction methods must be selected
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and applied. As mentioned earlier, direct comparison methods that are based on linear
preprocessing followed by image subtractions cannot be utilized here because of po-
tential significant registration errors. The registration difficulty is compounded by the
three dimensional nature of MRI breast scans. In other words, while mammographic
image comparison requires the registration of two bilateral X-ray scans, MRI com-
parison would require the registration of two bilateral sets of images. MRI volumes
can contain tens of images per breast. Therefore, features that represent image quali-
ties with no localization dependency were chosen for this study.

One of the image feature sets selected are non-orthogonal Gabor wavelets, which
are used for texture characterization [4]. In addition, we used co-occurrence matrices
combined with cumulative intensity distributions to represent volumes of fiber-
glandular tissue and fat [5]. Prior to feature extraction we apply intensity normaliza-
tion to correct for intensity variations. In addition, we use segmentation to separate
breasts from the background.

2.1 Non-orthogonal Gabor Wavelets

One-dimensional Gabor analysis was originally introduced as a means for optimal
joint time/frequency analysis of transmitted signals in communications systems. This
theory was later extended into two dimensions and applied to problems in computer
vision. Gabor wavelets also have biological counterparts in the cortical human visual
systems as they can effectively capture orientation and spatial frequency qualities [6].

Some of the more prominent applications of Gabor wavelets are in the area of tex-
ture characterization. Texture plays a key role in human vision, and has an important
part in the determination of objects’ shape. The visual cortex uses texture to establish
the shape of three-dimensional bodies. In fact, the reason high-end computer graphics
and visualization systems require higher resolution is in order to support increased
texture display requirements.

Gabor wavelets can efficiently localize frequency and orientation properties of an
analyzed image. Furthermore, results of texture segmentation experiments using Ga-
bor wavelets have produced strong correlation with results of identical segmentation
tasks performed by humans [7]. Gabor wavelets have been applied to many areas of
computer vision. These include texture segmentation, document analysis, edge detec-
tion, retina identification, target detection, fractal dimension measurement, image
coding, and image representation [8].

The general form of the complex Gabor wavelet function is presented below [9]. It
consists of a two-dimensional Gaussian function with standard deviation σ  that
modulates a spatial sinusoid as follows:
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where [ω  and \ω represent the spatial frequencies in the horizontal and vertical

directions, respectively. By convolving a Gabor function G with image I we obtain
the image W as follows:
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Fourier analysis of the general Gabor function is presented below.
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In the Fourier domain, the general Gabor wavelet function consists of a shifted Gaus-
sian with a displacement proportional to the central frequency parameter of the base
function. Its width, however, is determined by 1/σ  and is thus inversely proportional
to its spatial domain width. Notice that the Gaussian localization property is preserved
by the Gabor function, i.e., there is an optimal trade-off in localization for both fre-
quency and spatial domains.

The standard deviation value for Gabor wavelet base functions can be determined
according to the desired frequency and angular frequency-domain bandwidths. Ex-
pression 4 provides the relation between the frequency bandwidth, Bf, in octaves and
the spatial standard deviation, σ . f represents the selected central frequency and the
cut-off points are set to -6 db. A cut-off point is defined as the location where the
wavelet amplitude reaches a value that is equal to half of its peak magnitude.
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Expression 5 quantifies the Gabor function’s standard deviation as a function of the

desired angular bandwidth, θ% . Similarly, the cut-off points are also set here to -6

db. By dividing Expression 5 by Expression 4 we can derive the relationship between
the frequency and angular bandwidths.

To summarize, Gabor wavelets can be efficiently used for texture segmentation.
However, determining optimal values for the wavelet parameters is not a trivial prob-
lem. The wavelet parameters have to be selected in such way that textural properties
are properly captured. The central frequency and orientation together with their re-
spective bandwidths must lie close to the dominant texture components of interest. To
illustrate this, Figure 2 depicts the application of Gabor wavelets to a single MR
breast scan.

2.2 Co-occurrence Matrices

The gray level co-occurrence matrix (GLCM) representation is a well-studied method
used for texture characterization. This method relies on second order statistics via es-
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timation of the second order joint probability distribution. Ohanian and Dubes [10]
demonstrated the high viability of this method for extraction of texture features.
Co-occurrence matrices can be constructed in eight different spatial directions and for
a number of distances as follows:

[ ]ÿ�·��Öÿ��� θθ GMLIG&0 =Φ (6)

where G and θ  represent the displacement and angle of separation, respectively. The
elements of the co-occurrence matrix represent the probability that two image ele-
ments at a given separation would have values equal to i and j.  The co-occurrence
matrix is always square but only rarely symmetric.

Fig. 2. This figure depicts the magnitude response of Gabor wavelets as applied to the right
breast scan in Figure 1. Six Gabor ¸¼vrQ³h³v¸Q²�h³ �% angular spacing were used here to demon-
strate the wavelet response at different orientations. The actual number of orientations used in
this work was 18 with a bandwidth of 1 Octave and over 5 scales.

2.3 Extracted Feature Comparison

Once image features are extracted from each three-dimensional breast scan, we com-
pute statistical feature distributions for the three similarity metrics selected. As dis-
cusses earlier, these distributions are invariant to feature localization as they contain
global statistics for an entire breast volume. In order to effectively compare these sta-
tistical data, several metrics were evaluated in the context of three dimensional breast
MRI scans, including the Chomski norm, Bhattacharyya distance, Matusita distance
and the Divergence [11]. The Matusita distance is presented below,

!ÿ�ÿ�� ∫ −= 5/5/ 33330
(7)

where M(PL,PR) represents the Matusita distance between the distributions PL and PR,
corresponding to a left and right breast MRI scans, respectively.
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The Matusita distance metric faired significantly better when compared with other
distance metrics and was subsequently used for computing the results presented in
this study.

2.4 Patient Symmetry Evaluation

For evaluation purposes we randomly selected 51 normal patients who had previously
obtained bi-lateral breast MRI from a large population screening study. T1-weighted,

Fig. 3. An illustration of the comparison method applied for evaluation of the symmetry prop-
erties. Statistical feature properties of MRI volumes corresponding to left breasts are compared
against the right breasts of the evaluation population. This process is repeated for the right
breast volumes.

sagital images obtained prior to contrast enhancement by Gd-DTPA were used in the
analysis. The three feature extraction techniques described earlier were used to pro-
duce statistics pertaining to the degree of symmetry detected between a breast and
those from the entire population including the patient’s contra-lateral breast. Figure 3
illustrates the comparison procedure for a given test population. The extracted fea-
tures from each breast scan are compared, using the Matusita distance, which was de-
scribed earlier, with the features of each of the contra-lateral breasts of the entire test
population. The distance between two breast scans is denoted by

ÿ��ÿ�� LM5/ML/5 /5G5/G = , where R and L represent right and left breast MRI

scans with indices 1ML ����!��� ∈  and with N equal to the size of the evaluation

population or the number of patients. Note that due to the properties of the Matusita
metric, the left-right feature distance between two breast scans is equal to the right-
left distance i.e., the distance metric is symmetric.
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Two types of breast symmetry were identified in this study. Full symmetry is de-
fined when among the test population; both breasts of an analyzed patient are closest
to their respective contra-lateral breast. Partial symmetry occurs when only one breast
is closest to its contra-lateral breast.

3 Results

We computed symmetry rates obtained for each of the previously described feature-
extraction techniques. In addition, symmetry results based on a combination of the
three feature classes are also presented. Detection rates for each of the comparison
methods as well as the combined results are presented in table 1 (the closest match
group threshold was set to the closest 4 patients or roughly 8%). We obtained a de-
tection rate of the patient’s contra-lateral breast with a combined sensitivity ap-
proaching 94%.

Table 1. Similarity data calculated with a threshold of less than 8% of the test population (51
patients population size). The high effectiveness of Gabor wavelets is evident, however, further
improvement is achieved by combing it with 3D intensity distribution data and co-occurrence
matrices.

Two-breast symmetry One-breast symmetry

Intensity distributions 62% 76%

Co-occurrence matri-
ces

61% 78%

Gabor wavelets 84% 94%

Combined 88% 94%

As expected, texture analysis based on Gabor wavelets yielded the best results.
This can be explained by the close resemblance these wavelets bear with the receptive
field structures of cortical visual cells.

4 Discussion

This paper presents an effective procedure for evaluating the symmetry of contra-
lateral, three-dimensional, MRI breast scans. For that purpose, several image features
and feature comparison techniques are evaluated and compared. In that context, we
have empirically selected optimal parameters for Gabor wavelet analysis of breast
texture. The results obtained demonstrate that automated symmetry detection of breast
symmetry is both feasible and accurate. While preliminary, these data suggest that
improved detection accuracy may be possible beyond standard means to breast MRI
interpretation.
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Our studies indicate that Gabor wavelets are superior to other feature extraction
methods in terms of breast texture characterization. However, combining these fea-
tures with others can improve accuracy.

The method presented can be used for longitudinal studies by applying it to breast
MRI scans taken at different times. More specifically, a separate data file can be ap-
pended to each breast MR scan. These stored features can be used to track abnormal
changes between successive scans of the same breast. Any changes in breast tissue
due to a disease process will affect its texture. In turn, this discrepancy will cause the
value of the comparison metric to change.

An issue to be addressed, however, is the effective partitioning of MRI breast scans
into three-dimensional regions of interest (ROI). This will allow a more accurate lo-
calization of suspicious areas. To achieve this, alignment of contra lateral breasts
would be required. This task may be carried out by comparison of Gabor wavelet
features, computed over multiple scales.
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