Skip to main content

Computational Proof as Experiment: Probabilistic Algorithms from a Thermodynamic Perspective

  • Chapter
Verification: Theory and Practice

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2772))

Abstract

A novel framework for the design and analysis of energy-aware algorithms is presented, centered around a deterministic Bit-level (Boltzmann) Random Access Machine or BRAM model of computing, as well its probabilistic counterpart, the RABRAM. Using this framework, it is shown for the first time that probabilistic algorithms can asymptotically yield savings in the energy consumed, over their deterministic counterparts. Concretely, we show that the expected energy savings derived from a probabilistic RABRAM algorithm for solving the distinct vector problem introduced here, over any deterministic BRAM algorithm grows as \(\Theta \left( {n\ln \left( {\frac{n} {{n - \varepsilon \log \left( n \right)}}} \right)} \right)\), even though the deterministic and probabilistic algorithms have the same (asymptotic) time-complexity. The probabilistic algorithm is guaranteed to be correct with a probability \(p \geqslant \left( {1 - \frac{1} {{n^c }}} \right)\) (for a constant c chosen as a design parameter). As usual n denotes the length of the input instance of the DVP measured in the number of bits. These results are derived in the context of a technology-independent complexity measure for energy consumption introduced here, referred to as logical work. In keeping with the theme of the symposium, the introduction to this work is presented in the context of “computational proof” (algorithm) and the “work done” to achieve it (its energy consumption).

This work is supported in part by DARPA under seedling contract #F30602-02-2-0124.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Blum. A machine-independent theory of the complexity of recursive functions. Journal of the ACM, 14(2):322–326, 1967.

    Article  MATH  Google Scholar 

  2. L. Boltzmann. Further studies on the equilibrium distribution of heat energy among gas molecules. Viennese Reports, Oct. 1872.

    Google Scholar 

  3. G. J. Chaitin and J. T. Schwartz. A note on monte carlo primality tests and algorithmic information theory. Communications on Pure and Applied Mathematics, 31:521–527, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. A. Cook. The complexity of theorem proving procedures. The Third Annual ACM Symposium on the Theory of Computing, pages 151-158, 1971.

    Google Scholar 

  5. R. Feynman. Feynman Lectures on Computation. Addison-Wesley Publishing Company, 1996.

    Google Scholar 

  6. J. W. Gibbs. On the equilibrium of heterogeneous substances. Transactions of the Connecticut Academy, 2:108–248, 1876.

    Google Scholar 

  7. J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Transactions of the American Mathematical Society, 117, 1965.

    Google Scholar 

  8. R. Karp and M. Rabin. Efficient randomized pattern matching algorithms. IBM Journal of Research and Development, 31(2):249–260, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. M. Karp. Reducibility among combinatorial problems. Plenum Press New York, 1972.

    Google Scholar 

  10. R. M. Karp. Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in the plane. Mathematics of Operations Research,(USA), 2(3):209–224, Aug. 1977.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Leff and A. F. Rex. Maxwell’s demon: Entropy, information, computing. Princeton University Press, Princeton, N. J., 1990.

    Book  Google Scholar 

  12. L. A. Levin. Universal sorting problems. Problems of Information Transmission, 9:265–266, 1973.

    Google Scholar 

  13. Z. Manna. Properties of programs and the first-order predicate calculus. Journal of the ACM, 16(2):244–255, 1969.

    Article  MATH  Google Scholar 

  14. Z. Manna. Mathematical theory of computation. McGraw-Hill, 1974.

    Google Scholar 

  15. J. D. Meindl. Low power microelectronics: Retrospect and prospect. Proceedings of IEEE, pages 619-635, Apr. 1995.

    Google Scholar 

  16. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

    Google Scholar 

  17. K. Palem, S. Cheemalavagu, and P. Korkmaz. The physical representation of probabilistic bits (pbits) and the energy consumption of randomized switching. CREST Technical report, June 2003.

    Google Scholar 

  18. K. V. Palem. Thermodynamics of randomized computing: A discipline for energy aware algorithm design and analysis. Technical Report GIT-CC-02-56, Georgia Institute of Technology, Nov. 2002.

    Google Scholar 

  19. K. V. Palem. Energy aware computation: From algorithms and thermodynamics to randomized (semiconductor) devices. Technical Report GIT-CC-03-10, Georgia Institute of Technology, Feb. 2003.

    Google Scholar 

  20. K. V. Palem. Energy aware computing through randomized switching. Technical Report GIT-CC-03-16, Georgia Institute of Technology, May 2003.

    Google Scholar 

  21. C. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1994.

    Google Scholar 

  22. H. Putnam. Models and reality. Journal of Symbolic Logic, XLV:464–482, 1980.

    Article  MathSciNet  Google Scholar 

  23. M. O. Rabin. Degree of difficulty of computing a function and a partial ordering of recursive sets. Technical Report 2, Hebrew University, Israel, 1960.

    Google Scholar 

  24. M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory, 12:128–138, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. O. Rabin and D. S. Scott. Finite automata and their decision problems. IBM Journal of Research and Development, 3(2):115–125, 1959.

    Article  MathSciNet  Google Scholar 

  26. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM, 27:701–717, 1980.

    Article  MATH  Google Scholar 

  27. K.-U. Stein. Noise-induced error rate as limiting factor for energy per operation in digital ics. IEEE Journal of Solid-State Circuits, SC-31(5), 1977.

    Google Scholar 

  28. A. Turing. On computable numbers, with an application to the entscheidungsproblem. In Proceedings of the London Mathematics Society, number 42 in 2, 1936.

    Google Scholar 

  29. H. von Baeyer. Maxwell’s Demon: Why warmth disperses and time passes. Random House, 1998.

    Google Scholar 

  30. von Neumann J. Mathematical foundations of quantum mechanics. Princeton University Press, Princeton, N. J., 1955.

    MATH  Google Scholar 

  31. A. Whitehead and B. Russell. Principia Mathematica. Cambridge University Press, 1913.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palem, K.V. (2003). Computational Proof as Experiment: Probabilistic Algorithms from a Thermodynamic Perspective. In: Dershowitz, N. (eds) Verification: Theory and Practice. Lecture Notes in Computer Science, vol 2772. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39910-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39910-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21002-3

  • Online ISBN: 978-3-540-39910-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics